Question 1: The sum of two numbers is \displaystyle  60 and their difference is \displaystyle  14 . Find the numbers.

Answer:

Let the two numbers be \displaystyle  x \text{ and } y

\displaystyle  x+y = 60 ... ... ... ... ... ... (i)

\displaystyle  x-y = 14 ... ... ... ... ... ... (ii)

Add (i) and (ii)

\displaystyle  2x = 74 \text{ or }x = 37

Therefore \displaystyle  y = 37-14 = 23

Hence the two numbers are \displaystyle  23 \text{ and } 37

\displaystyle  \\

Question 2: Twice a number is equal to thrice the other number. If the sum of the numbers is \displaystyle  85 , find the numbers.

Answer:

Let the two numbers are \displaystyle  x \text{ and } y

\displaystyle  2x = 3y ... ... ... ... ... ... (i)

\displaystyle  x+y = 85 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

 \displaystyle  2x-3y = 0

\displaystyle  \underline {(-)2x+2y = 170 }

\displaystyle  -5y = -170

or \displaystyle  y = 34

Therefore \displaystyle  x = \frac{3}{2} \times 34 = 51

Hence the two numbers are \displaystyle  51 \text{ and } 34 .

\displaystyle  \\

Question 3: Find two numbers such that twice the first added to thrice the second gives \displaystyle  70 and twice the second added to thrice the first gives \displaystyle  75 .

Answer:

Let the numbers be \displaystyle  x \text{ and } y

\displaystyle  2x+3y = 70 ... ... ... ... ... ... (i)

\displaystyle  3x+2y = 75 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Multiply i) by 2 and ii) by 3 and subtract ii) from i)

 \displaystyle  6x+9y = 210

\displaystyle  \underline{(-) 6x+4y = 150}

\displaystyle  5y = 60

\displaystyle  \Rightarrow y = 12

Substituting in i)

\displaystyle  \Rightarrow x = \frac{70-3y}{2} = \frac{70-36}{2} = 17

Hence the two numbers are \displaystyle  17 \text{ and } 12

\displaystyle  \\

Question 4: Find two numbers which differ by \displaystyle  9 and are such that four times the larger added to three times the smaller gives \displaystyle  92 .

Answer:

Let the numbers be \displaystyle  x \text{ and } y

\displaystyle  x-y = 9 ... ... ... ... ... ... (i)

\displaystyle  4x+3y = 92 ... ... ... ... ... ... (ii)

Solving by \displaystyle  x \text{ and } y

Multiply i) by 4 and subtract ii) from i)

\displaystyle  4x-4y = 36

\displaystyle  \underline{(-)4x+3y = 92}

\displaystyle  -7y = -56

\displaystyle  \Rightarrow y = 8

Calculating for \displaystyle  x

\displaystyle  \Rightarrow x = y+9 = 8+9 = 17

Hence the two numbers are \displaystyle  8 \text{ and } 17

\displaystyle  \\

Question 5: The sum of two numbers is \displaystyle  30 and the difference of their squares is \displaystyle  180 . Find the numbers.

Answer:

Let the two numbers be \displaystyle  x \text{ and } y

\displaystyle  x+y = 30 ... ... ... ... ... ... (i)

\displaystyle  x^2-y^2 = 180 ... ... ... ... ... ... (ii)

Simplifying ii)

\displaystyle  (x-y)(x+y) = 180

\displaystyle  \Rightarrow x-y = 180/30 = 6

\displaystyle  x-y = 6 ... ... ... ... ... ... (iii)

Solving for \displaystyle  x \text{ and } y

Add i) and iii)

 \displaystyle  x+y = 30

\displaystyle  \underline{(+) x-y = 6}

\displaystyle  2x = 36

\displaystyle  \Rightarrow x = 18

Substituting in i) \displaystyle  y = 30-18 = 12

Hence the numbers are \displaystyle  18 \text{ and } 12

\displaystyle  \\

Question 6: The sum of the digits of a two-digit number is \displaystyle  8 . On adding \displaystyle  18 to the number, its digits are reversed. Find the number.

Answer:

Let the two digit numbers be \displaystyle  xy

\displaystyle  x+y = 8 ... ... ... ... ... ... (i)

\displaystyle  10x+y+18 = 10y+x ... ... ... ... ... ... (ii)

Simplifying ii)

\displaystyle  9x-9y = -18

\displaystyle  \Rightarrow x-y = -2 ... ... ... ... ... ... (iii)

Solving for \displaystyle  x \text{ and } y

Add i) and iii)

\displaystyle  x+y = 8

\displaystyle  \underline{(+) x-y = -2}

\displaystyle  2x = 6

\displaystyle  \Rightarrow x = 3

Substituting in i) \displaystyle  \Rightarrow y = 8-3 = 5

Hence the numbers is \displaystyle  35

\displaystyle  \\

Question 7: Two digit number is three times the sum of its digits. lf \displaystyle  45 is added to the number, its digits are reversed. Find the original number.

Answer:

Let the two digit numbers be \displaystyle  xy

\displaystyle  3(x+y) = 10x+y ... ... ... ... ... ... (i)

\displaystyle  10x+y+45 = 10y+x ... ... ... ... ... ... (ii)

Simplifying i) and ii)

\displaystyle  7x-2y = 0 ... ... ... ... ... ... (iii)

\displaystyle  9x-9y = -45

\displaystyle  \Rightarrow x-y = -5 ... ... ... ... ... ... (iv)

Solving for \displaystyle  x \text{ and } y

Multiplying iv) by 7 and Subtract iv) from ii)

 \displaystyle  7x-2y = 0

\displaystyle  \underline{(-)7x-7y = -35}

\displaystyle  5y = 35

\displaystyle  \Rightarrow y = 7

Hence \displaystyle  x = y-5 = 7-5 = 2

Therefore the numbers is \displaystyle  27

\displaystyle  \\

Question 8: A two-digit number is seven times the sum of its digits. If \displaystyle  27 is subtracted from the number, its digits get interchanged. Find the number.

Answer:

Let the two digit number be \displaystyle  xy

\displaystyle  10x+y = 7(x+y)

\displaystyle  \Rightarrow 3x-6y = 0 ... ... ... ... ... ... (i)

\displaystyle  10x+y-27 = 10y+x

\displaystyle  \Rightarrow 9x-9y = 27

\displaystyle  \Rightarrow x-y = 3 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Multiplying ii) by 3 and Subtract ii) from i)

\displaystyle  3x-6y = 0

\displaystyle  (-) 3x-3y = 9

\displaystyle  -3y = -9

\displaystyle  \Rightarrow y = 3

Hence \displaystyle  x = y+3 = 6

Therefore the numbers is \displaystyle  63

\displaystyle  \\

Question 9: Find a fraction which reduces to \displaystyle  2/3 when \displaystyle  3 is added to both its numerator and denominator; and reduces to \displaystyle  3/5 when \displaystyle  1 is added to both its numerator and denominator.

Answer:

Let the fraction be \displaystyle  \frac{x}{y}

\displaystyle  \frac{x+3}{y+3} = \frac{2}{3}

\displaystyle  \Rightarrow 3x+9 = 2y+6

\displaystyle  \Rightarrow 3x-2y = -3 ... ... ... ... ... ... (i)

\displaystyle  (x+1)/(y+1) = 3/5

\displaystyle  \Rightarrow 5x+5 = 3y+3

\displaystyle  \Rightarrow 5x-3y = 2 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Multiplying i) by 5 and ii) by 3 and subtract ii) from i)

\displaystyle  15x-10y = -15

\displaystyle  \underline {(-)15x-9y = -6}

\displaystyle  -y = -9

\displaystyle  \Rightarrow y = 9

Hence \displaystyle  x = \frac{2y-3}{3} = \frac{18-3}{3} = 5

Therefore the fraction is \displaystyle  \frac{5}{9}

\displaystyle  \\

Question 10: On adding \displaystyle  1 to the numerator of a fraction, it becomes \displaystyle  1/2 . Also, on adding \displaystyle  1 to the denominator of the original fraction, it becomes \displaystyle  1/3 . Find the original fraction.

Answer:

Let the fraction be \displaystyle  \frac{x}{y}

\displaystyle  \frac{x+1}{y} = \frac{1}{2}

\displaystyle  \Rightarrow 2x-y = -2 ... ... ... ... ... ... (i)

\displaystyle  \frac{x}{y+1} = \frac{1}{3}

\displaystyle  \Rightarrow 3x-y = 1 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Multiplying i) by 3 and ii) by 2 and subtract ii) from i)

\displaystyle  6x-3y = -6

\displaystyle  \underline{ (-) 8x-2y = 2}

\displaystyle  -y = -8

\displaystyle  \Rightarrow y = 8

Hence \displaystyle  x = \frac{1+8}{3} = 3

Therefore the fraction is \displaystyle  \frac{3}{8}

\displaystyle  \\

Question 11: In a given fraction, if the numerator is multiplied by \displaystyle  2 and the denominator is reduced by \displaystyle  5 , we get \displaystyle  6/5 . But, if the numerator of the given fraction is increased by \displaystyle  8 and the denominator is doubled, we get \displaystyle  2/5 . Find the fraction.

Answer:

Let the fraction be \displaystyle  \frac{x}{y}

\displaystyle  \frac{2x}{y-5} = \frac{6}{5}

\displaystyle  \Rightarrow 10x-6y = -30 ... ... ... ... ... ... (i)

\displaystyle  \frac{x+8}{2y} = \frac{2}{5}

\displaystyle  \Rightarrow 5x-4y = -40 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Multiplying ii) by 2 and subtract ii) from i

\displaystyle  10x-6y = -3

\displaystyle  \underline{(-)10x-8y = -80}

\displaystyle  2y = 50

\displaystyle  \Rightarrow y = 25

Hence \displaystyle  x = (4y-40)/5 = (100-40)/5 = 12

Therefore the fraction in \displaystyle  \frac{12}{25}

\displaystyle  \\

Question 12: \displaystyle  5 years ago, a lady was thrice as old as her daughter. \displaystyle  10 years hence, the lady would be twice as old as her daughter. What are their present ages?

Answer:

Let the present age of lady \displaystyle  = x

Let the Present age of Daughter \displaystyle  = y

\displaystyle  x-5 = 3(y-5)

\displaystyle  \Rightarrow x-3y = -10 ... ... ... ... ... ... (i)

\displaystyle  x+10 = 2(y+10)

\displaystyle  \Rightarrow x-2y = 10 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Subtract ii) from i)

\displaystyle  x-3y = -10

\displaystyle  \underline{(-) x-2y = 10}

\displaystyle  -y = -20

\displaystyle  \Rightarrow y = 20

Hence \displaystyle  x = 2y+10 = 50

Therefore :

Lady’s Age \displaystyle  = 50 \text{ years }

Daughter’s Age \displaystyle  = 20 \text{ years }

\displaystyle  \\

Question 13: The sum of the ages of A and B is \displaystyle  39 years. In \displaystyle  15 years’ time, the age of A will be twice the age of B. Find their present ages.

Answer:

Let A’s Age \displaystyle  = x

Let B’s Age \displaystyle  = y

\displaystyle  x+y = 39 ... ... ... ... ... ... (i)

\displaystyle  x+15 = 2(y+15)

\displaystyle  \Rightarrow x-2y = 15 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Subtract ii) from i)

\displaystyle  x+y = 39

\displaystyle  \underline{(-) x-2y = 15}

\displaystyle  3y = 24

or \displaystyle  y = 8

\displaystyle  \Rightarrow x = 39-y = 39-8 = 31

Therefore

A’s Age \displaystyle  = 31 \text{ years }

B’s Age \displaystyle  = 8 \text{ years }

\displaystyle  \\

Question 14: A is \displaystyle  15 years elder than B. \displaystyle  5 years ago A was four times as old as B. Find their present ages.

Answer:

Let the age of B \displaystyle  = x,

\displaystyle  \Rightarrow Age of A = x+15

\displaystyle  +15-5 = 4(x-5)

\displaystyle  \Rightarrow x+10 = 4x-20

\displaystyle  3x = 30 \text{ or }x = 10

Hence A’s Age \displaystyle  = 10+15 = 25

Therefore

B’s Age \displaystyle  = 10 \text{ years }

A’s Age \displaystyle  = 25 \text{ years }

\displaystyle  \\

Question 15: Six years ago, the ages of Geeta and Seema were in the ratio \displaystyle  3 : 4 . Nine years hence, their ages will be in the ratio \displaystyle  6 : 7 . Find their present ages.

Answer:

Let the age of Geeta \displaystyle  = x

Let the age of Seema \displaystyle  = y

\displaystyle  \frac{x-6}{y-6} = \frac{3}{4}

\displaystyle  \Rightarrow 4x-24 = 3y-18

\displaystyle  \Rightarrow 4x-3y = 6 ... ... ... ... ... ... (i)

\displaystyle  \frac{x+9}{y+9} = \frac{6}{7}

\displaystyle  \Rightarrow 7x+63 = 6y+54

\displaystyle  7x-6y = -9 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Multiplying i) by 7 and ii) by 4 and Subtract ii) from i)

\displaystyle  28x-21y = 42

\displaystyle  \underline{(-)28x-24y = -36}

\displaystyle  3y = 78

\displaystyle  \Rightarrow y = 26

Hence \displaystyle  x = \frac{6+3\times 26}{4} = 21

Therefore

Geeta’s Age \displaystyle  = 21 \text{ years }

Seema’s Age \displaystyle  = 26 \text{ years }

\displaystyle  \\

Question 16: \displaystyle  4 knives and \displaystyle  6 forks cost Rs. \displaystyle  200 , while \displaystyle  6 knives and, \displaystyle  7 forks together cost Rs. \displaystyle  264 . Find the cost of a knife and that of a fork.

Answer:

Let the cost of knives \displaystyle  = x

Let the Cost of fork \displaystyle  = y

\displaystyle  4x+6y = 200 ... ... ... ... ... ... (i)

\displaystyle  6x+7y = 264 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Multiplying i) by 3 and ii) 2

\displaystyle  12x+18y = 600

\displaystyle  \underline{(-)12x+14y = 528}

\displaystyle  4y = 72

\displaystyle  \Rightarrow y = 18

Hence \displaystyle  x = \frac{200-6\times 18}{4} = 23

Hence Cost of :

Knive \displaystyle  = 23 \text{ Rs. }

Fork \displaystyle  = 18 \text{ Rs. }

\displaystyle  \\

Question 17: The cost of \displaystyle  13 cups and \displaystyle  16 spoons is Rs. \displaystyle  296 , while the cost of \displaystyle  16 cups and \displaystyle  13 spoons is Rs. \displaystyle  284 . Find the cost of \displaystyle  2 cups and \displaystyle  5 spoons.

Answer:

Let the cost of Cup \displaystyle  = x

Let the Cost of Spoon \displaystyle  = y

\displaystyle  13x+16y = 296 ... ... ... ... ... ... (i)

\displaystyle  16x+13y = 284 ... ... ... ... ... ... (ii)

Solve for \displaystyle  x \text{ and } y

Multiply i) by 16 and ii) by 13 and subtract ii) from i)

\displaystyle  208x+256y = 4736

\displaystyle  \underline{(-) 208x+169y = 3692}

\displaystyle  87y = 1044

\displaystyle  \Rightarrow y = 12

Hence \displaystyle  x = \frac{296-16\times 12}{13} = 8

Hence Cost of:

Cup \displaystyle  = 8 \text{ Rs. }

Spoon \displaystyle  = 12 \text{ Rs. }

\displaystyle  \\

Question 18: Rahul covered a distance of \displaystyle  128 km in \displaystyle  5 hours, partly on bicycle at \displaystyle  16 kmph and partly on moped at \displaystyle  32 kmph. How much distance did he cover on moped?

Answer:

Total Distance \displaystyle  = 128 km

Total Time \displaystyle  = 5 Hrs.

Let the distance covered by cycle \displaystyle  = x km

Let the Distance covered by moped \displaystyle  = (120-x) Km.

\displaystyle  \Rightarrow \frac{x}{16} + \frac{120x}{32} = 5

Simplify \displaystyle  \Rightarrow 2x+128-x = 160

\displaystyle  \Rightarrow x = 160-128 = 32

Hence Distance Covered by:

Cycle \displaystyle  = 32 \text{ Km.  }

Moped \displaystyle  = 96 \text{ Km. }

\displaystyle  \\

Question 19: A boat can go \displaystyle  75 km downstream in \displaystyle  5 hours and, \displaystyle  44 km upstream in \displaystyle  4 hours. Find i) the speed of the boat in still water (ii) the rate of the current.

Answer:

Let the Speed of boat in still water \displaystyle  = x

Speed of Stream \displaystyle  = y

\displaystyle  75/(x+y) = 5

\displaystyle  \Rightarrow x+y = 17 ... ... ... ... ... ... (i)

\displaystyle  4x/(x-y) = 4

\displaystyle  \Rightarrow x-y = 11 ... ... ... ... ... ... (ii)

Solve for \displaystyle  x \text{ and } y , add i) and ii)

\displaystyle  2x = 28 \text{ or }x = 14 \text{ Km /hr }

Speed of Stream \displaystyle  = 3 \text{ Km/hr } 

\displaystyle  \\

Question 20: The monthly incomes of A and B are in the ratio \displaystyle  4 : 3 and their monthly savings are in the ratio \displaystyle  9 : 5 . If each spends Rs. \displaystyle  3500 per month, find the monthly income of each.

Answer:

Let A’s Income \displaystyle  = x Rs.

Let B’s Income \displaystyle  = y Rs.

\displaystyle  \frac{x}{y} = \frac{4}{3}

\displaystyle  \Rightarrow 3x = 4y ... ... ... ... ... ... (i)

\displaystyle  \frac{x-3500}{y-3500} = \frac{9}{5}

\displaystyle  \Rightarrow 5x-17500 = 9y-31500

\displaystyle  \Rightarrow 5x-9y = -14000 ... ... ... ... ... ... (ii)

Substituting \displaystyle  x = \frac{4}{3} y in ii)

\displaystyle  \Rightarrow 5( \frac{4}{3} y)-9y = -14000

\displaystyle  -7y = -14000\times 3 \text{ or }y = 6000 \text{ Rs. }

Hence \displaystyle  x = \frac{4}{3} \times 6000 = 8000 \text{ Rs. }

Therefore :

A’s Income \displaystyle  =  8000 \text{ Rs. }

B’s Income \displaystyle  = 6000 \text{ Rs. }

\displaystyle  \\

Question 21: \displaystyle  6 nuts and \displaystyle  5 bolts weigh \displaystyle  278 grams, while \displaystyle  8 nuts and \displaystyle  3 bolts weigh \displaystyle  268 grams. Find the weight of each nut and that of each bolt. How much do \displaystyle  3 nuts and \displaystyle  3 bolts weigh together?

Answer:

Let the Weight of Nut \displaystyle  = x gm.

Let the Height of Bolt \displaystyle  = y gm.

\displaystyle  6x+5y = 278 ... ... ... ... ... ... (i)

\displaystyle  8x+3y = 268 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Multiply i) by 8 and ii) by 6 and Subtract ii) from i)

\displaystyle  48x+40y = 2224

\displaystyle  \underline{(-)48x+18y = 1608}

\displaystyle  22y = 616)

\displaystyle  \Rightarrow y = 28

Hence \displaystyle  x = \frac{278-5\times 28}{6} = 23

Weight of:

Nut \displaystyle  = 23 \text{ gm }

Bolt \displaystyle  = 28 \text{ gm }

Therefore 3 Nuts and 3 Bolts will weight \displaystyle  = 3\times 23+3\times 28 = 153 \text{ gm }

\displaystyle  \\

Question 22: There are some girls in two classrooms, A and B. If \displaystyle  12 girls are sent from room A to room B, the number of girls in both the rooms will become equal. If \displaystyle  11 girls are sent from room B to room A, then the number of girls in room A would be double the number of girls in room B. How many girls are there in each class room?

Answer:

Let No. of girls in classroom \displaystyle  A = x \text{ and in } B = y

\displaystyle  x-12 = y+12

\displaystyle  \Rightarrow x-y = 24 ... ... ... ... ... ... (i)

\displaystyle  2(y-11) = x+11

\displaystyle  \Rightarrow x-2y = -33 ... ... ... ... ... ... (ii)

Solving \displaystyle  x \text{ and } y ,

Subtract ii) from i)

\displaystyle  x-y = 24

\displaystyle  \underline{(-) x-2y = -33}

\displaystyle  y = 57

Hence \displaystyle  x = 24+57 = 81

No. of Girls in Class Room:

\displaystyle  A = 81

\displaystyle  B = 57

\displaystyle  \\

Question 23: \displaystyle  4 men and \displaystyle  4 boys can do a piece of work in \displaystyle  3 days, while \displaystyle  2 men and \displaystyle  5 boys can finish it in \displaystyle  4 days. How long would it take \displaystyle  1 man alone to do it?

Answer:

Suppose 1 man finished the work in \displaystyle  x days and 1 Boy finished the work in \displaystyle  y days

There 1 man’s 1 day’s \displaystyle  = \frac{1}{x}

And, 1 Boy’s 1 Day’s work \displaystyle  = \frac{1}{y}

Now 4 men and 4 Boys finished the work in 3 days

\displaystyle  \Rightarrow \frac{ 4}{x} + \frac{5}{y} = \frac{1}{3} ... ... ... ... ... ... (i)

Similarly 2 men and 5 boys finished in 4 days

\displaystyle  \Rightarrow \frac{ 2}{x} + \frac{5}{y} = \frac{1}{4} ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

Multiply ii) by 2 and Subtract ii) from 2

\displaystyle  \Rightarrow \frac{ 4}{x} + \frac{4}{y} = \frac{1}{3}

\displaystyle  \Rightarrow \underline{(-) \frac{ 4}{x}+\frac{10}{y} = \frac{1}{2}}

\displaystyle  \frac{-6}{y} = \frac{-1}{6}

or \displaystyle  y = 36

Similarly \displaystyle  x = \frac{4}{\frac{1}{3}-\frac{4}{36}} = \frac{4 \times 36}{8} = 18

So one men can finished the work in \displaystyle  18 days.

\displaystyle  \\

Question 24: A takes \displaystyle  3 hours longer than B to walk \displaystyle  30 km. But, if A doubles his pace, he is ahead of B by \displaystyle  1 hour \displaystyle  30 minutes. Find the speeds of A and B.

Answer:

Let the Speed of A \displaystyle  = x  \text{ KM/Hr. }

Let the Speed of B \displaystyle  = y  \text{ KM/Hr. }

Time taken By A \displaystyle  = \frac{30}{x}

Time Taken By B \displaystyle  = \frac{30}{y}

\displaystyle  \Rightarrow \frac{30}{x} = \frac{30}{y} +3 ... ... ... ... ... ... (i)

If A Double him Race Time taken by A \displaystyle  = \frac{30}{2x}

Therefore

\displaystyle  \frac{30}{2x} + \frac{3}{2} = \frac{30}{y}

\displaystyle  \Rightarrow \underline{(-) \frac{30}{x} = \frac{30}{y}+3}

\displaystyle  \frac{-30}{2x} + \frac{3}{2} = -3

\displaystyle  \Rightarrow x = \frac{10}{3} = 3 \frac{1}{3}  \text{ KM/Hr. }

Hence \displaystyle  \frac{30}{y} = \frac{30}{10} \times 3-3 = 6

\displaystyle  \Rightarrow y = \frac{30}{6} = 5  \text{ KM/Hr. }

\displaystyle  \\

Question 25: If the length of a rectangle is reduced by \displaystyle  1 m and breadth increased by \displaystyle  2 m, its area increases by \displaystyle  32 m2. If however, the length is increased by \displaystyle  2 m and breadth reduced by \displaystyle  3 m, then the area is reduced by \displaystyle  49 m2. Find the length and breadth of the rectangle.

Answer:

Let the Length of the rectangle \displaystyle  = x

Let the Breadth of the rectangle \displaystyle  = y

\displaystyle  \Rightarrow (x-1)(y+2) = xy+32

\displaystyle  \Rightarrow xy-y+2x-2 = xy+32

\displaystyle  \Rightarrow 2x-y = 34 ... ... ... ... ... ... (i)

\displaystyle  \Rightarrow (x+2)(y-3) = xy-49

\displaystyle  \Rightarrow 3x-2y-3x-6 = xy-49

\displaystyle  \Rightarrow 3x-2y = 43 ... ... ... ... ... ... (ii)

Solving for \displaystyle  x \text{ and } y

From i) \displaystyle  y = 2x-34

Substituting in ii) \displaystyle  \Rightarrow 3x-2(2x-34) = 43

\displaystyle  \Rightarrow 3x-4x+68 = 43

\displaystyle  \Rightarrow x = 25 \text{ m }

Hence \displaystyle  y = 2(25)-34 = 16 \text{ m }

Therefore:

Length \displaystyle  = 25 \text{ m }

Breadth \displaystyle  = 16 \text{ m }