Note: The equation of the line whose length of the perpendicular from the origin is \displaystyle p and the angle made by the perpendicular with the positive x-axis is given by \displaystyle \alpha is given by \displaystyle x \cos \alpha + y \sin \alpha = p  

Question 1: Find the equation of a line for which

i) \displaystyle p = 5, \alpha = 60^{\circ} ii) \displaystyle p = 4, \alpha = 150^{\circ} iii) \displaystyle p = 8, \alpha = 225^{\circ} vi) \displaystyle p = 8, \alpha = 300^{\circ}

Answer:

i) \displaystyle \text{Given } p = 5, \alpha = 60^{\circ}

Therefore the equation of line in normal form:

\displaystyle \therefore x \cos 60^{\circ} + y \sin 60^{\circ} = 5

\displaystyle \Rightarrow \frac{x}{2} + \frac{\sqrt{3}y}{2} = 5

\displaystyle \Rightarrow x + \sqrt{3} y = 10

ii) \displaystyle \text{Given } p = 4, \alpha = 150^{\circ}

Therefore the equation of line in normal form:

\displaystyle \therefore x \cos 150^{\circ} + y \sin 150^{\circ} = 4

\displaystyle \Rightarrow x \cos (180^{\circ}-30^{\circ}) + y \sin (180^{\circ}-30^{\circ}) = 4

\displaystyle \Rightarrow -x \cos 30^{\circ} + y \sin 30^{\circ} = 4

\displaystyle \Rightarrow \frac{-\sqrt{3} x}{2} + \frac{y}{2} = 4

\displaystyle \Rightarrow \sqrt{3}x - y +8=0

iii) \displaystyle \text{Given } p = 8, \alpha = 225^{\circ}

Therefore the equation of line in normal form:

\displaystyle \therefore x \cos 225^{\circ} + y \sin 225^{\circ} = 8

\displaystyle \Rightarrow x \cos (180^{\circ}+45^{\circ}) + y \sin (180^{\circ}+45^{\circ}) = 8

\displaystyle \Rightarrow -x \cos 45^{\circ} - y \sin 45^{\circ} = 8

\displaystyle \Rightarrow \frac{- x}{\sqrt{2}} - \frac{y}{\sqrt{2}} = 8

\displaystyle \Rightarrow x+y + 8\sqrt{2} = 0

vi) \displaystyle \text{Given } p = 8, \alpha = 300^{\circ}

Therefore the equation of line in normal form:

\displaystyle \therefore x \cos 300^{\circ} + y \sin 200^{\circ} = 8

\displaystyle \Rightarrow x \cos (360^{\circ}-60^{\circ}) + y \sin (360^{\circ}-60^{\circ}) = 8

\displaystyle \Rightarrow x \cos 60^{\circ} - y \sin 60^{\circ} = 8

\displaystyle \Rightarrow \frac{x}{2} - \frac{\sqrt{3}y}{2} = 8

\displaystyle \Rightarrow x-\sqrt{3} y = 16

\displaystyle \\

Question 2: Find the equation of the line on which the length of the perpendicular segment from the origin to the line is \displaystyle 4 and the inclination of the perpendicular segment with the positive direction of x-axis is \displaystyle 30^{\circ} .

Answer:

\displaystyle \text{Given } p = 4, \alpha = 30^{\circ}

Therefore the equation of line in normal form:

\displaystyle \therefore x \cos 30^{\circ} + y \sin 30^{\circ} = 4

\displaystyle \Rightarrow \frac{\sqrt{3} x}{2} + \frac{y}{2} = 4

\displaystyle \Rightarrow \sqrt{3}x + y = 8

\displaystyle \\

Question 3: Find the equation of the line whose perpendicular distance from the origin is \displaystyle 4 units and the angle which the normal makes with the positive direction of x-axis is \displaystyle 15^{\circ} .

Answer:

\displaystyle \text{Given } p = 4, \alpha = 15^{\circ}

Therefore the equation of line in normal form:

\displaystyle \therefore x \cos 15^{\circ} + y \sin 15^{\circ} = 4

\displaystyle \therefore x \cos ( 45^{\circ} - 30^{\circ}) + y \sin ( 45^{\circ} - 30^{\circ}) = 4

\displaystyle \Rightarrow x \Big( \frac{\sqrt{3}+1 }{2\sqrt{2}} \Big) + y\Big( \frac{\sqrt{3}-1 }{2\sqrt{2}} \Big) = 4

\displaystyle \Rightarrow (\sqrt{3}+1) x + (\sqrt{3}-1)y = 8\sqrt{2}

\displaystyle \\

Question 4: Find the equation of the straight line at a distance of \displaystyle 3 units from the origin such that the perpendicular from the origin to the line makes an angle \displaystyle \alpha given by \displaystyle \tan \alpha = \frac{5}{12} with the positive direction of x-axis.

Answer:

\displaystyle \text{Given } p = 3, \alpha = \tan^{-1} \Big( \frac{5}{12} \Big)

\displaystyle \therefore \tan \alpha = \frac{5}{12} \Rightarrow \frac{\sin \alpha}{\cos \alpha} = \frac{5}{12} \Rightarrow \frac{\sin \alpha}{\cos \alpha} = \frac{5/13}{12/13}  

\displaystyle \therefore \sin \alpha = \frac{5}{13} and \displaystyle \cos \alpha = \frac{12}{13}  

Therefore the equation of line in normal form:

\displaystyle x \cos \alpha + y \sin \alpha = p

\displaystyle \Rightarrow x \Big( \frac{12}{13} \Big) + y \Big( \frac{5}{13} \Big) = 3

\displaystyle \Rightarrow 12x + 5y = 39

\displaystyle \\

Question 5: Find the equation of the straight line on which the length of the perpendicular from the origin is \displaystyle 2 and the perpendicular makes an angle \displaystyle \alpha with x-axis such that \displaystyle \sin \alpha = \frac{1}{3} .

Answer:

\displaystyle \text{Given } p = 2, \sin \alpha = \frac{1}{3}

\displaystyle \therefore \cos \alpha = \sqrt{ 1 - \sin^2 \alpha } = \sqrt{1 - \frac{1}{9}} = \frac{2\sqrt{2}}{3}  

Therefore the equation of line in normal form:

\displaystyle x \cos \alpha + y \sin \alpha = p

\displaystyle \Rightarrow x \Big( \frac{2\sqrt{2}}{3} \Big) + y \Big( \frac{1}{3} \Big) = 2

\displaystyle \Rightarrow 2\sqrt{2}x + y = 6

\displaystyle \\

Question 6: Find the equation of the straight line upon which the length of the perpendicular from the origin is \displaystyle 2 and the slope of this perpendicular is \displaystyle \frac{5}{12} .

Answer:

\displaystyle \text{Given } p = 2, \tan \alpha = \frac{5}{12}  

\displaystyle \therefore \sin \alpha = \frac{5}{13} and \displaystyle \cos \alpha = \frac{12}{13}  

Therefore the equations of line in normal form:

Case 1: \displaystyle \alpha = \alpha

\displaystyle x \cos \alpha + y \sin \alpha = p

\displaystyle \Rightarrow x \Big( \frac{12}{13} \Big) + y \Big( \frac{5}{13} \Big) = 2

\displaystyle \Rightarrow 12x + 5y = 26

Case 2: \displaystyle \alpha = (180^{\circ}+ \alpha)

\displaystyle x \cos (180^{\circ}+ \alpha) + y \sin (180^{\circ}+ \alpha) = p

\displaystyle - x \cos \alpha - y \sin \alpha = 2

\displaystyle \Rightarrow -x \Big( \frac{12}{13} \Big) - y \Big( \frac{5}{13} \Big) = 2

\displaystyle \Rightarrow -12x - 5y = 26

\displaystyle \Rightarrow 12x + 5y - 26=0

\displaystyle \\

Question 7: The length of the perpendicular from the origin to a line is \displaystyle 7 and the line makes an angle of \displaystyle 15^{\circ} with the positive direction of y-axis. Find the equation of the line.

Answer:

\displaystyle \text{Given } p = 7, \alpha = 30^{\circ}

Therefore the equation of line in normal form:

\displaystyle \therefore x \cos 30^{\circ} + y \sin 30^{\circ} = 7

\displaystyle \Rightarrow \frac{\sqrt{3} x}{2} + \frac{y}{2} = 7

\displaystyle \Rightarrow \sqrt{3} x + y = 14

\displaystyle \\

Question 8: Find the value of \displaystyle \theta and \displaystyle p , if the equation \displaystyle x \cos \theta + y \sin \theta = p is the normal form of the line \displaystyle \sqrt{3}x +y + 2 = 0 .

Answer:

Given equation is

\displaystyle \sqrt{3}x +y + 2 = 0

\displaystyle \Rightarrow \sqrt{3}x +y = - 2

\displaystyle \Rightarrow \Big( \frac{\sqrt{3}}{-2} \Big) x + \Big( \frac{1}{-2} \Big) y = 1

\displaystyle \Rightarrow \Big( \frac{-\sqrt{3}}{2} \Big) x + \Big( \frac{-1}{2} \Big) y = 1

Comparing this with the equation \displaystyle x \cos \theta + y \sin \theta = p we get

\displaystyle p = 1,

\displaystyle \cos \theta = \frac{-\sqrt{3}}{2} \Rightarrow \theta = 210^{\circ}

\displaystyle \\

Question 9: Find the equation of the straight line which makes a triangle of area \displaystyle 96\sqrt{3} with the axes and perpendicular from the origin to it makes an angle of \displaystyle 30^{\circ} with y-axis.

Answer:

\displaystyle \text{Given } p = 7, \alpha = 60^{\circ}

Therefore the equation of line in normal form:

\displaystyle \therefore x \cos 60^{\circ} + y \sin 60^{\circ} = p

\displaystyle \Rightarrow \frac{x}{2} + \frac{\sqrt{3}y}{2} = p

\displaystyle \Rightarrow \frac{x}{2p} + \frac{\sqrt{3}y}{2p} = 1

\displaystyle \text{Therefore x-intercept } = 2p \text{ and y-intercept } = \frac{2p}{\sqrt{3}}  

It is given that the area of \displaystyle \triangle AOB = 96\sqrt{3}

\displaystyle \therefore \frac{1}{2} \times 2p \times \frac{2p}{\sqrt{3}} = 96\sqrt{3}

\displaystyle \Rightarrow p^2 = 144

\displaystyle \Rightarrow p = 12

Therefore equation of \displaystyle AB = x + \sqrt{3}y = 24

\displaystyle \\

Question 10: Find the equation of a straight line on which the perpendicular from the origin makes an angle of \displaystyle 30^{\circ} with x-axis and which forms a triangle of area \displaystyle 50\sqrt{3} with the axes

Answer:

\displaystyle \text{Given } OL = p, \alpha = 30^{\circ}

Therefore the equation of line in normal form:

\displaystyle \therefore x \cos 30^{\circ} + y \sin 30^{\circ} = p

\displaystyle \Rightarrow \frac{\sqrt{3}x}{2} + \frac{y}{2} = p

\displaystyle \Rightarrow \frac{\sqrt{3}x}{2p} + \frac{y}{2p} = 1

\displaystyle \text{Therefore x-intercept } = \frac{2p}{\sqrt{3}} \text{ and y-intercept } = 2p

\displaystyle \text{It is given that the area of } \triangle AOB = \frac{50}{\sqrt{3}}  

\displaystyle \therefore \frac{1}{2} \times \frac{2p}{\sqrt{3}} \times 2p = \frac{50}{\sqrt{3}}  

\displaystyle \Rightarrow p^2 = 25

\displaystyle \Rightarrow p = 5

Therefore equation of \displaystyle AB = \sqrt{3} x + y = 10