Reduce each of the following to the lowest terms:

Question 1:  \frac{x^2+x}{x^2-1}

Answer:

\frac{x^2+x}{x^2-1} = \frac{x ( x+1 ) }{ ( x+1 ) ( x-1 ) } = \frac{x}{ ( x-1 ) }  

\\

Question 2:  \frac{x^2-16}{{ ( x+4 ) }^2}

Answer:

\frac{x^2-16}{{ ( x+4 ) }^2} = \frac{ ( x-4 ) ( x+4 ) }{ ( x+4 ) ( x+4 ) } = \frac{x-4}{x+4}  

\\

Question 3:  \frac{a^2-b^2}{a^2b-{ab}^2}

Answer:

\frac{a^2-b^2}{a^2b-{ab}^2} = \frac{ ( a-b ) (a+b)}{ab(a-b)} = \frac{(a+b)}{ab}  

\\

Question 4:  \frac{a^2+ab}{{2a}^3b-{2ab}^3}

Answer:

\frac{a^2+ab}{{2a}^3b-{2ab}^3} = \frac{a ( a+b ) }{2ab ( a^2-b^2 ) } = \frac{a ( a+b ) }{2ab ( a-b ) ( a+b ) } = \frac{1}{2 b\ ( a-b ) }  

\\

Question 5:  \frac{x^2-9}{x^2+x-6}

Answer:

\frac{x^2-9}{x^2+x-6} = \frac{ ( x-3 ) ( x+3 ) }{ ( x+3 ) ( x-2 ) } = \frac{ ( x-3 ) }{ ( x-2 ) }  

\\

Question 6:  \frac{x^2-2x}{x^2+3x-10}

Answer:

\frac{x^2-2x}{x^2+3x-10} = \frac{x ( x-2 ) }{ ( x+5 ) ( x-2 ) } = \frac{x}{ ( x+5 ) }  

\\

Question 7:  \frac{x+3}{x^2-x-12}

Answer:

\frac{x+3}{x^2-x-12} = \frac{x+3}{ ( x-4 ) ( x+3 ) } = \frac{1}{x-4}  

\\

Question 8:  \frac{x^2+2x-15}{x^2+4x-21}

Answer:

\frac{x^2+2x-15}{x^2+4x-21} = \frac{ ( x+5 ) ( x-3 ) }{ ( x+7 ) ( x-3 ) } = \frac{x+5}{x+7}  

\\

Question 9:  \frac{x^2-5x+4}{x^2-3x-4}

Answer:

\frac{x^2-5x+4}{x^2-3x-4} = \frac{ ( x-1 ) ( x-4 ) }{ ( x+1 ) ( x-4 ) } = \frac{x-1}{x+1}  

\\

Question 10:  \frac{x^3-{xy}^2}{x^3+{2x}^2y+{xy}^2}

Answer:

\frac{x^3-{xy}^2}{x^3+{2x}^2y+{xy}^2} = \frac{x ( x-y ) ( x+y ) }{x^2 ( x+y ) +2y ( x+y ) } = \frac{x ( x-y ) ( x+y ) }{x ( x+y ) ( x+y ) } = \frac{x-y}{x+y}  

\\

Question 11:  \frac{{2x}^2+7x+3}{{3x}^2+10x+3}

Answer:

\frac{{2x}^2+7x+3}{{3x}^2+10x+3} = \frac{{2x}^2+x+6x+3}{3x^2+9x+x+3}  

= \frac{x ( 2x+1 ) +3 ( 2x+1 ) }{3x ( x+3 ) + ( x+3 ) } = \frac{ ( 2x+1 ) (x+3)}{ ( 3x+1 ) (x+3)} = \frac{2x+1}{3x+1}  

\\

Question 12:  \frac{{2x}^2+x-3}{{3x}^2+x-4}

Answer:

\frac{{2x}^2+x-3}{{3x}^2+x-4} = \frac{2x^2-2x+3x-3}{3x^2+4x-3x-4}  

= \frac{2x ( x-1 ) +3 ( x-1 ) }{3x ( x-1 ) +4 ( x-1 ) } = \frac{ ( 2x+3 ) ( x-1 ) }{ ( 3x+4 ) ( x-1 ) } = \frac{2x+3}{3x+4}  

\\

Simplify:

Question 13:  \frac{x^2-16}{x^2-9} \times \frac{x+3}{x+4}

Answer:

\frac{x^2-16}{x^2-9} \times \frac{x+3}{x+4} = \frac{ ( x-4 ) ( x+4 ) ( x+3 ) }{ ( x-3 ) ( x+3 ) ( x+4 ) } = \frac{x-4}{x-3}  

\\

Question 14:  \frac{a^2-{ab}^2}{a^2-{16b}^2} \times \frac{a+4b}{a-3b}

Answer:

\frac{a^2-{ab}^2}{a^2-{16b}^2} \times \frac{a+4b}{a-3b} = \frac{ ( a-3b ) (a+3b(a+4b)}{ ( a-4b ) ( a+4b ) ( a-3b ) } = \frac{a+3b}{a-4b}  

\\

Question 15:  \frac{x^2+6x+5}{x^2+5x} \times \frac{x^3-x}{x^2-1}

Answer:

\frac{x^2+6x+5}{x^2+5x} \times \frac{x^3-x}{x^2-1} = \frac{ ( x+1 ) ( x+5 ) x ( x-1 ) ( x+1 ) }{x ( x+5 ) ( x-1 ) ( x+1 ) } = (x+1)  

\\

Question 16:  \frac{x+y}{x^2-xy} \div \frac{x^2+xy}{x-y}

Answer:

\frac{x+y}{x^2-xy} \div \frac{x^2+xy}{x-y} = \frac{x+y}{x(x-y)} \times \frac{x-y}{x(x+y)} = \frac{1}{x^2}  

\\

Question 17:  \frac{x^2-5x}{2x-3y} \div \frac{x^2-25}{{4x}^2-9y^2}

Answer:

\frac{x^2-5x}{2x-3y} \div \frac{x^2-25}{{4x}^2-9y^2} = \frac{x ( x-5 ) }{ ( 2x-3y ) } \times \frac{ ( 2x-3y ) ( 2x+3y ) }{ ( x-5 ) ( x+5 ) } = \frac{x(2x+3y)}{(x+5)}

\\

Question 18:  \frac{x^2+2-6}{x^2+2x-3} \div \frac{x^2+5x-14}{x^2+4x-5}

Answer:

\frac{x^2+2-6}{x^2+2x-3} \div \frac{x^2+5x-14}{x^2+4x-5} = \frac{ ( x+3 ) ( x-2 ) }{ ( x+3 ) ( x-1 ) } \times \frac{ ( x+5 ) ( x-1 ) }{ ( x+7 ) ( x-2 ) } = \frac{x+5}{x+7}  

\\

Question 19:  \frac{{3x}^2-x-2}{x^2+x-2} \div \frac{{3x}^2-7x-6}{x^2-x-6}  

Answer:

\frac{{3x}^2-x-2}{x^2+x-2} \div \frac{{3x}^2-7x-6}{x^2-x-6}  

= \frac{{3x}^2-3x+2x-2}{x^2+2x-x-2} \times \frac{x^2-3x+2x-6}{3x^2-9x+2x-6}  

= \frac{3x ( x-1 ) +2 ( x-1 ) }{x ( x+2 ) -1 ( x+2 ) } \times \frac{x ( x+2 ) -3 ( x+2 ) }{3x ( x-3 ) +2 ( x-3 ) }  

= \frac{ ( 3x+2 ) ( x-1 ) }{ ( x-1 ) ( x+2 ) } \times \frac{ ( x+2 ) ( x-3 ) }{ ( x-3 ) ( 3x+2 ) } = 1

\\

Question 20:  \frac{{2x}^2-3x-2}{x^2+7x+12} \times \frac{x^2+x-12}{x^2+3x-10} \div \frac{{2x}^2-5x-3}{x^2+8x+15}  

Answer:

\frac{{2x}^2-3x-2}{x^2+7x+12} \times \frac{x^2+x-12}{x^2+3x-10} \div \frac{{2x}^2-5x-3}{x^2+8x+15}  

= \frac{{2x}^2-4x+x-2}{ ( x+4 ) ( x+3 ) } \times \frac{ ( x+4 ) ( x-3 ) }{ ( x+5 ) ( x-2 ) } \times \frac{ ( x+3 ) ( x+5 ) }{{2x}^2-2x+3x-3}  

= \frac{2x ( x-2 ) + ( x-2 ) }{ ( x+4 ) ( x+3 ) } \times \frac{ ( x+4 ) ( x-3 ) }{ ( x+5 ) ( x-2 ) } \times \frac{ ( x+3 ) ( x+5 ) }{ ( 2x+1 ) ( x-3 ) }  

= \frac{(2x+1) ( x-2 ) }{ ( x+4 ) ( x+3 ) } \times \frac{ ( x+4 ) ( x-3 ) }{ ( x+5 ) ( x-2 ) } \times \frac{ ( x+3 ) ( x+5 ) }{ ( 2x+1 ) ( x-3 ) } = 1

\\

Simplify:

Question 21:  \frac{2x+3}{3}-\frac{2x-4}{4}  

Answer:

\frac{2x+3}{3}-\frac{2x-4}{4}  

= \frac{4 ( 2x+3 ) -3 ( 2x-4 ) }{12}  

= \frac{8x+12-6x+12}{12} = \frac{2x+24}{12} = \frac{x+12}{6}  

= \frac{3}{x-1}-\frac{3}{x+1}  

= \frac{3 ( x+1 ) -3 ( x-1 ) }{ ( x-1 ) ( x+1 ) }  

= \frac{3x+3-3x+3}{ ( x-1 ) (x+1)} = \frac{6}{ ( x-1 ) (x+1)}  

\\

Question 22:  \frac{3x-1}{4x}+\frac{3-5x}{12x}  

Answer:

\frac{3x-1}{4x}+\frac{3-5x}{12x}  

= \frac{12x ( 3x-1 ) +4x ( 3-5x ) }{48x^2}  

= \frac{3}{x-1}-\frac{3}{x+1}  

= \frac{3 ( x+1 ) -3 ( x-1 ) }{ ( x-1 ) ( x+1 ) }  

= \frac{3x+3-3x+3}{ ( x-1 ) (x+1)} = \frac{6}{ ( x-1 ) (x+1)}  

\\

Question 23:  \frac{3x-1}{4x}+\frac{3-5x}{12x}  

Answer:

\frac{3x-1}{4x}+\frac{3-5x}{12x}  

= \frac{12x ( 3x-1 ) +4x ( 3-5x ) }{48x^2}  

= \frac{36x^2-12x+12x-20x^2}{48x^2} = \frac{{16x}^2}{48x^2} = \frac{1}{3}  

\\

Question 24:  \frac{x}{x-1}-\frac{x^2}{x^2-1}

Answer:

\frac{x}{x-1}-\frac{x^2}{x^2-1} = \frac{x ( x^2-1 ) -x^2 ( x-1 ) }{ ( x-1 ) ( x-1 ) ( x+1 ) }  

= \frac{x^3-x-x^3++x^2}{ ( x-1 ) ( x-1 ) ( x+1 ) } = \frac{x ( x-1 ) }{ ( x-1 ) ( x-1 ) ( x+1 ) }  

= \frac{x}{ ( x-1 ) (x+1)}  

\\

Question 25:  \frac{6}{a+b}-\frac{5}{a-b}+\frac{11b}{a^2-b^2}  

Answer:

\frac{6}{a+b}-\frac{5}{a-b}+\frac{11b}{a^2-b^2}  

= \frac{6 ( a-b ) -5 ( a+b ) +11b}{ ( a-b ) ( a+b ) }  

= \frac{6a-6b-5a-5b+11b}{ ( a-b ) (a+b)}  

= \frac{a}{ ( a-b ) ( a+b ) }  

\\

Question 26:  \frac{6}{x-2}+\frac{8}{2x-4}  

Answer:

\frac{6}{x-2}+\frac{8}{2x-4}  

= \frac{6 ( 2x-4 ) +8 ( x-2 ) }{ ( x-2 ) ( 2x-4 ) } = \frac{12x-24+8x-16}{ ( x-2 ) ( 2x-4 ) }  

= \frac{20x-40}{ ( x-2 ) ( 4-4 ) } = \frac{20 ( x-2 ) }{ ( x-2 ) ( x-4 ) } = \frac{20}{x-4}  

\\

Question 27:  \frac{1}{x^2-11x+30}+\frac{1}{x^2-9x+20}  

Answer:

\frac{1}{x^2-11x+30}+\frac{1}{x^2-9x+20}  

= \frac{1}{ ( x-6 ) ( x-5 ) }+\frac{1}{ ( x-5 ) ( x-4 ) }  

= \frac{ ( x-4 ) + ( x-6 ) }{ ( x-6 ) ( x-5 ) ( x-4 ) }  

= \frac{2(x-5)}{ ( x-6 ) ( x-5 ) ( x-4 ) } = \frac{2}{ ( x-6 ) (x-4)}  

\\

Question 28:  \frac{1}{x^2-8x+15}+\frac{1}{x^2-4x+3}-\frac{2}{ ( x^2-6x+5 ) }  

Answer:

\frac{1}{x^2-8x+15}+\frac{1}{x^2-4x+3}-\frac{2}{ ( x^2-6x+5 ) }  

= \frac{1}{ ( x-3 ) ( x-5 ) }+\frac{1}{ ( x-3 ) ( x-1 ) }-\frac{2}{ ( x-3 ) ( x-2 ) }  

= \frac{ ( x-1 ) ( x-2 ) + ( x-2 ) ( x-5 ) -2 ( x-1 ) ( x-5 ) }{ ( x-1 ) ( x-2 ) ( x-3 ) ( x-5 ) }  

= \frac{x^2-3x+2+x^2-7x+10-2x^2+12x-10}{ ( x-1 ) ( x-2 ) ( x-3 ) ( x-5 ) }  

= \frac{2(x+1)}{ ( x-1 ) ( x-2 ) ( x-3 ) (x-5)}  

\\

Question 29:  \frac{x-3}{x^2-7x+12}+\frac{2 ( x-1 ) }{x^2-4x+3}-\frac{3 ( x-4 ) }{x^2-5x+4}  

Answer:

\frac{x-3}{x^2-7x+12}+\frac{2 ( x-1 ) }{x^2-4x+3}-\frac{3 ( x-4 ) }{x^2-5x+4}  

= \frac{x-3}{ ( x-3 ) ( x-4 ) }+\frac{2 ( x-1 ) }{ ( x-3 ) ( x-1 ) }-\frac{3 ( x-4 ) }{ ( x-4 ) ( x-1 ) }  

= \frac{1}{ ( x-4 ) }+\frac{2}{ ( x-3 ) }-\frac{3}{ ( x-1 ) }  

= \frac{x^2-4x+3+2x^2-10x+8-{3x}^2+21x-36}{ ( x-1 ) ( x-3 ) ( x-4 ) }  

= \frac{7x-25}{ ( x-1 ) ( x-3 ) (x-4)}  

\\

Question 30:  \frac{x^2-x-6}{x^2-9}+\frac{x^2+2x-24}{x^2-x-12}  

Answer:

\frac{x^2-x-6}{x^2-9}+\frac{x^2+2x-24}{x^2-x-12}  

= \frac{ ( x-6 ) (x+1)}{ ( x-3 ) (x+3)}+\frac{ ( x+6 ) (x-4)}{ ( x-4 ) (x+3)}  

= \frac{ ( x-6 ) ( x+1 ) }{ ( x-3 ) ( x+3 ) }+\frac{ ( x+6 ) }{ ( x+3 ) }  

= \frac{(x^2-5x-6)+(x^2+3x-18)}{ ( x-3 ) ( x+3 ) }  

= \frac{{2x}^2-2x-24}{ ( x-3 ) (x+3)} = \frac{2 ( x-4 ) (x+3)}{ ( x-3 ) (x+3)} = \frac{2(x-4)}{(x-3)}  

\\

Question 31:  ( \frac{2x}{4x+1}-\frac{x}{2x+3} ) \div{}\ \frac{10x+5}{2x+3}  

Answer:

( \frac{2x}{4x+1}-\frac{x}{2x+3} ) \div{}\ \frac{10x+5}{2x+3}  

= \frac{4x^2+6x-{4x}^2-x}{ ( 4x+1 ) ( 2x+3 ) }\times{}\frac{2x+3}{5 ( 2x+1 ) }  

= \frac{5x(2x+3)}{5 ( 4x+1 ) ( 2x+3 ) (2x+1)} = \frac{x}{ ( 4x+1 ) (2x+1)}  

\\

Question 32:  ( \frac{a^2+a-12}{a^2+6a+8}+\frac{a^2-6a+5}{a^2-3a-10} ) of \frac{a^2+8+12}{a^2+4a-12}

Answer:

( \frac{a^2+a-12}{a^2+6a+8}+\frac{a^2-6a+5}{a^2-3a-10} ) of \frac{a^2+8+12}{a^2+4a-12}

=  ( \frac{ ( a+4 ) ( a+3 ) }{ ( a+4 ) ( a+2 ) }+\frac{ ( a-5 ) ( a-1 ) }{ ( a-5 ) ( a+2 ) } ) \times \frac{(a+2)(a+6)}{(a+6)(a-2)}

=  ( \frac{a-3}{a+2}+\frac{a-1}{a+2} )   = \ \frac{2a-4}{a-2}