Solve each pair of the equations given below, using substitution method:

Question 1: \displaystyle x+y=12 , \displaystyle x-y=2  

Answer:

\displaystyle x+y=12 … … … … …i)

\displaystyle x-y=2 … … … … …ii)

From ii)

\displaystyle x=y+2

Substituting in i)

\displaystyle y +2+y=12

\displaystyle \Rightarrow 2y=10

\displaystyle \Rightarrow y=5

Therefore \displaystyle x=5+2=7

Hence \displaystyle x=7, y=5

\displaystyle \\

Question 2: \displaystyle 5x+3y=24 , \displaystyle 3x-y=20

Answer:

\displaystyle 5x+3y=24 … … … … …i)

\displaystyle 3x-y=20 … … … … …ii)

From ii)

\displaystyle y=3x-20

Substituting in i)

\displaystyle 5x+3(3x-20)= 24

\displaystyle \Rightarrow 14x-60=24

\displaystyle \Rightarrow x=6

Therefore \displaystyle y=3\times 6-20= -2

Hence \displaystyle x=6, y= -2

\displaystyle \\

Question 3: \displaystyle x-3y=2 , \displaystyle 2x+7y=30

Answer:

\displaystyle x-3y=2 … … … … …i)

\displaystyle 2x+7y=30 … … … … …ii)

From i)

\displaystyle x=3y+2

Substituting in ii)

\displaystyle 2(3y+2)+ 7y=30

\displaystyle \Rightarrow 13y+4=30

\displaystyle \Rightarrow y=2

Therefore \displaystyle x=3\times 2+2=8

Hence \displaystyle x=8, y=2

\displaystyle \\

Question 4: \displaystyle x+4y=5 , \displaystyle 4x+y=50

Answer:

\displaystyle x+4y=5 … … … … …i)

\displaystyle 4x+y=50 … … … … …ii)

From i)

\displaystyle x=5-4y

Substituting in ii)

\displaystyle 4(5-4y)+ y=50

\displaystyle \Rightarrow 20-25y=50

\displaystyle \Rightarrow y= -2

Therefore \displaystyle x=5-4\times (-2)= 13

Hence \displaystyle x=13, y= -2

\displaystyle \\

Question 5: \displaystyle 2x+3y=6 , \displaystyle 3x+5y=15

Answer:

\displaystyle 2x+3y=6 … … … … …i)

\displaystyle 3x+5y=15 … … … … …ii)

From i)

\displaystyle x=3- \frac{3}{2} y

Substituting in ii)

\displaystyle 3(3- \frac{3}{2} y )+ 5y=15

\displaystyle \Rightarrow 9-4.5y+5y=15

\displaystyle \Rightarrow y=12

Therefore \displaystyle x=3- \frac{3}{2} \times 12=3-18=-15

Hence \displaystyle x= -15, y=12

\displaystyle \\

Question 6: \displaystyle 5x-7y=9 , \displaystyle 2x+5y=12

Answer:

\displaystyle 5x-7y=9 … … … … …i)

\displaystyle 2x+5y=12 … … … … …ii)

From i)

\displaystyle x= \frac{7}{5} y- \frac{9}{5}

Substituting in ii)

\displaystyle 2( \frac{7}{5} y- \frac{9}{5} )+ 5y=12

\displaystyle \Rightarrow ( \frac{14}{5} +5 )y- \frac{18}{5} =12

\displaystyle \Rightarrow \frac{39}{5} y= \frac{78}{5}

\displaystyle \Rightarrow y=2

\displaystyle x= \frac{7}{5} \times 2- \frac{9}{5} = \frac{5}{5} =1

Hence \displaystyle x=1, y=2

\displaystyle \\

Solve each pair of the equations given below, using elimination method:

Question 7: \displaystyle x+2y=39 , \displaystyle 2x-3y=1

Answer:

\displaystyle x+2y=39 … … … … …i)

\displaystyle 2x-3y=1 … … … … …ii)

Multiply i) by 2 and then subtract ii) from i)

\displaystyle 2x+4y=78

 \displaystyle (-) \underline{2x-3y=1}

  \displaystyle 7y=77

\displaystyle \Rightarrow y=11

Substituting in i)

\displaystyle x=39-2\times 11=17

Hence \displaystyle x=17 , y=11

\displaystyle \\

Question 8: \displaystyle 3x-y=5 , \displaystyle 5x-2y=4

Answer:

\displaystyle 3x-y=5 … … … … …i)

\displaystyle 5x-2y=4 … … … … …ii)

Multiply i) by 2 and then subtract ii) from i)

\displaystyle 6x-2y=10

 \displaystyle (-) \underline{5x-2y=4}

  \displaystyle x=6

\displaystyle \Rightarrow x=6

Substituting in i)

\displaystyle y=3 (6) - 5 =13

Hence \displaystyle x=6 , y=13

\displaystyle \\

Question 9: \displaystyle 14x-3y=54 , \displaystyle 21x-8y=95

Answer:

\displaystyle 14x-3y=54 … … … … …i)

\displaystyle 21x-8y=95 … … … … …ii)

Multiply i) by 3 and ii) by 2 and subtract ii) from i)

\displaystyle 42x-9y=162

\displaystyle (-) \underline{42x-16y=190}

 \displaystyle 7y=-28

\displaystyle \Rightarrow y = -4

Substituting in i)

\displaystyle 14x=3(-4)+54

\displaystyle x= \frac{42}{14} =3

Hence \displaystyle x=3, y=-4

\displaystyle \\

Question 10: \displaystyle 7x-6y=37 , \displaystyle 5x+4y=43

Answer:

\displaystyle 7x-6y=37 … … … … …i)

\displaystyle 5x+4y=43 … … … … …ii)

Multiply i) by 5 and ii) by 7 and subtract ii) from i)

\displaystyle 35x-30y=185

\displaystyle (-) \underline{35x+28y=301}

 \displaystyle -58y=-116

\displaystyle \Rightarrow y=2

Substituting in i)

\displaystyle x= \frac{6\times 2+37}{7} =7

Hence \displaystyle x=7, y=2

\displaystyle \\

Question 11: \displaystyle 10x+3y=36 , \displaystyle 15x-14y=17

Answer:

\displaystyle 10x+3y=36 … … … … …i)

\displaystyle 15x-14y=17 … … … … …ii)

Multiply i) by 3 and ii) by 2 and subtract ii) from i)

\displaystyle 30x+9y=108

\displaystyle (-) \underline{30x-28y=34}

 \displaystyle 37y=74

\displaystyle \Rightarrow y=2

Substituting in i)

\displaystyle x= \frac{(36-3\times 2)}{10} =3

Hence \displaystyle x=3, y=2

\displaystyle \\

Question 12: \displaystyle 4x+3=14 , \displaystyle 9x-5y=55

Answer:

\displaystyle 4x+3=14 … … … … …i)

\displaystyle 9x-5y=55 … … … … …ii)

Multiply i) by 9 and ii) by 4 and subtract ii) from i)

 \displaystyle 36x+27y=126

\displaystyle (-) \underline{36x-20y=220}

 \displaystyle 47y= -94

\displaystyle \Rightarrow y=-2

Substituting in i)

\displaystyle x= \frac{((14-3(-2))}{4} =5

Hence \displaystyle x=5, y= -2

\displaystyle \\

Question 13: \displaystyle 4x-3y=11 , \displaystyle 2x-5y= -5

Answer:

\displaystyle 4x-3y=11 … … … … …i)

\displaystyle 2x-5y= -5 … … … … …ii)

Multiply ii) by 2 and subtract ii) from i)

\displaystyle 4x- 3y=11

\displaystyle (-) \underline{ 4x-10y=-10}

 \displaystyle 7y=21

\displaystyle y=3

Substituting in i)

\displaystyle x= \frac{(11+3(3))}{4} =5

Hence \displaystyle x=5, y=3

\displaystyle \\

Solve the following simultaneous equations:

Question 14: \displaystyle 11x-8y=46 , \displaystyle 2x+7y=-17

Answer:

\displaystyle 11x-8y=46 … … … … …i)

\displaystyle 2x+7y=-17 … … … … …ii)

Multiply i) by 2 and ii) by 11 and subtract ii) from i)

\displaystyle 22x-16y=92

\displaystyle (-) \underline{22x+77y=187}

 \displaystyle -93y=279

\displaystyle \Rightarrow y= -3

Substituting back in i)

\displaystyle x= \frac{(8(-3)+46)}{11} =2

Hence \displaystyle x=2, y= -3

\displaystyle \\

Question 15: \displaystyle 5x-3y=13 , \displaystyle 3x-2y=5

Answer:

\displaystyle 5x-3y=13 … … … … …i)

\displaystyle 3x-2y=5 … … … … …ii)

Multiply i) by 3 and ii) by 5 and subtract ii) from i)

\displaystyle 15x-9y=39

\displaystyle (-) \underline{15x-10y=25}

\displaystyle y=14

Substituting back in i)

\displaystyle x= \frac{(3(14)+13)}{5} =11

Hence \displaystyle x=11, y=14

\displaystyle \\

Question 16: \displaystyle 5a+4b=22 , \displaystyle 4a-5b=23

Answer:

\displaystyle 5a+4b=22 … … … … …i)

\displaystyle 4a-5b=23 … … … … …ii)

Multiply i) by 4 and ii) by 5 and subtract ii) from i)

\displaystyle 20a+16b=88

\displaystyle (-) \underline{20a+25b=115}

\displaystyle -9b= -27

\displaystyle \Rightarrow b=3

Substituting in i)

\displaystyle a= \frac{(22-4(3))}{5} =2

Hence \displaystyle a=2, b=3

\displaystyle \\

Question 17: \displaystyle 8x+3y=0 , \displaystyle 3x+5(y+3)= -16

Answer:

\displaystyle 8x+3y=0 … … … … …i)

\displaystyle 3x+5(y+3)= -16 … … … … …ii)

Simplifying ii)

\displaystyle 3x+5y= -31 ... ... ... ... ...iii)

From i)

\displaystyle x=- \frac{3}{8} y

Substituting in iii)

\displaystyle 3(- \frac{3}{8} y)+5y= -31

\displaystyle (5- \frac{9}{8} )y=-31

\displaystyle \frac{31}{8} y= -31

\displaystyle \Rightarrow y= -8

Therefore

\displaystyle x= - \frac{3}{8} \times (-8)= 3

Hence \displaystyle x=3, y= -8

\displaystyle \\

Question 18: \displaystyle 8y-5z=7 , \displaystyle 3y=4(z-2)

Answer:

\displaystyle 8y-5z=7 … … … … …i)

\displaystyle 3y=4(z-2) … … … … …ii)

Simplify ii)

\displaystyle 3x-4z= -8 ... ... ... ... ...iii)

Multiply i) by 3 and iii) by 8 and subtract iii) from i)

\displaystyle 24y-15z=21

\displaystyle (-) \underline{y-32z=-64}

\displaystyle 17z=85

\displaystyle \Rightarrow z=5

Substituting in i)

\displaystyle y= \frac{(5(5)+7)}{8} =4

Hence \displaystyle z=5, y=4

\displaystyle \\

Question 19: \displaystyle 2(a-3)+3(b-5)= 0 , \displaystyle 5(a-1)+4(b-4)= 0

Answer:

\displaystyle 2(a-3)+3(b-5)= 0 … … … … …i)

\displaystyle 5(a-1)+4(b-4)= 0 … … … … …ii)

Simplify i) and ii)

\displaystyle 2a+3b=21 ... ... ... ... ...iii)

\displaystyle 5a+4b=21 ... ... ... ... ...iv)

Multiplying iii) by 5 and iv) by 2 and subtract iv) from iii)

\displaystyle 10a+15b=105

\displaystyle (-) \underline{10a+8b=42}

\displaystyle 7b=63

\displaystyle \Rightarrow b=9

Substituting in iii)

\displaystyle a= \frac{(21-3(9))}{2} = -3

Hence \displaystyle a= -3, b=9

\displaystyle \\

Question 20: \displaystyle 4(3x-y)= 9x+5 , \displaystyle 3(2x+3y)=13 (x+y-5)

Answer:

\displaystyle 4(3x-y)= 9x+5 … … … … …i)

\displaystyle 3(2x+3y)=13 (x+y-5) … … … … …ii)

Simplifying i) and ii)

\displaystyle 12x-4y=9x+5

\displaystyle 3x-4y=5 ... ... ... ... ...iii)

\displaystyle 6x+9y=13x+13y-65

\displaystyle 7x+4y=65 ... ... ... ... ...iv)

Add iii) and iv)

\displaystyle 10x=70

\displaystyle \Rightarrow x=7

Substitute in iii)

\displaystyle 4y=3x-5=21-5

\displaystyle \Rightarrow y= \frac{16}{4} =4

Hence \displaystyle x=7, y=4

\displaystyle \\

Question 21: \displaystyle \frac{x}{2} - \frac{y}{3} =3 , \displaystyle 4x-3y=22

Answer:

\displaystyle \frac{x}{2} - \frac{y}{3} =3 … … … … …i)

\displaystyle 4x-3y=22 … … … … …ii)

Simplifying i) multiply by 6

\displaystyle 3x-2y=18 ... ... ... ... ...iii)

Multiply ii) by 3 and iii) by 4 and subtract iii) from ii)

\displaystyle 12x-9y=66

\displaystyle (-) \underline{12x-8y=72}

\displaystyle -y= -6

\displaystyle \Rightarrow y=6

Substituting in ii)

\displaystyle x= \frac{(3\times 6+22)}{4} =10

Hence \displaystyle x=10, y=6

\displaystyle \\

Question 22: \displaystyle \frac{x}{3} - \frac{y}{4} =0 , \displaystyle \frac{2x}{3} + \frac{3y}{4} =5

Answer:

\displaystyle \frac{x}{3} - \frac{y}{4} =0 … … … … …i)

\displaystyle \frac{2x}{3} + \frac{3y}{4} =5 … … … … …ii)

Simplify i) and ii) by multiplying i) by 12 and ii) also by 12

\displaystyle 4x-3y=0 ... ... ... ... ...iii)

\displaystyle 8x+9y=60 ... ... ... ... ...iv)

Multiply iii) by 2 and subtract iv) from iii)

\displaystyle 8x-6y=0

\displaystyle (-) \underline{8x+9y=60}

\displaystyle -15y= -60

\displaystyle \Rightarrow y=4

\displaystyle x=6\times \frac{4}{8} =3

Hence \displaystyle x=3, \ y=4

\displaystyle \\

Question 23: \displaystyle \frac{x}{3} - \frac{5y}{6} =3 , \displaystyle \frac{3x}{4} - \frac{5y}{2} =8

Answer:

\displaystyle \frac{x}{3} - \frac{5y}{6} =3 … … … … …i)

\displaystyle \frac{3x}{4} - \frac{5y}{2} =8 … … … … …ii)

Simplify i) and ii) by multiplying i) by 6 and ii) by 4

\displaystyle 2x-5y=18 ... ... ... ... ...iii)

\displaystyle 3x-10=32 ... ... ... ... ...iv)

Now multiply iii) by 3 and iv) by 2 and subtract iv) from iii)

 \displaystyle 6x-15y=54

 \displaystyle (-) \underline{6x-20y=64}

 \displaystyle 5y= -10

\displaystyle \Rightarrow y= -2

Substituting in iii)

\displaystyle x= \frac{(5(-2)+18)}{2} =4

Hence \displaystyle x=4, y= -2

\displaystyle \\

Question 24: \displaystyle \frac{(3a+5)}{4} = \frac{(2b-1)}{6} , \displaystyle \frac{4a}{3} + \frac{b}{6} = -1

Answer:

\displaystyle \frac{(3a+5)}{4} = \frac{(2b-1)}{6} … … … … …i)

\displaystyle \frac{4a}{3} + \frac{b}{6} = -1 … … … … …ii)

Simplify i) and ii), multiply i) by 12, and ii) by 6

\displaystyle 3(3a+5)= 2(2b-1)

\displaystyle 9a+15=4b-2 ... ... ... ... ...iii)

\displaystyle 9a-4b= -17

\displaystyle 8a+b= -6 ... ... ... ... ...iv)

Multiply iv) by 4 and add iii) and iv)

\displaystyle 9a-4b=-17

\displaystyle (+) \underline{32a+4b=-24}

\displaystyle 41a = -41

\displaystyle a= -1

Substituting in iv)

\displaystyle b= -8(-1)-6=2

Hence \displaystyle a= -1, b=2

\displaystyle \\

Question 25: \displaystyle 23x+31y=7 , \displaystyle 31x+23y=47

Answer:

\displaystyle 23x+31y=7 … … … … …i)

\displaystyle 31x+23y=47 … … … … …ii)

Add i) and ii)

\displaystyle 54x+54y=54

\displaystyle \Rightarrow x+y=1 ... ... ... ... ...iii)

Now multiply iii) by 23 and subtract iii) from i)

\displaystyle 23x+31y=7

\displaystyle (-) \underline{23x+23y=23}

\displaystyle 8y= -16

\displaystyle \Rightarrow y= -2

\displaystyle x=1-y=1-(-2)=3

Hence \displaystyle x=3, y= -2

\displaystyle \\

Question 26: \displaystyle 97x-78y=59 , \displaystyle 78x-97y=116

Answer:

\displaystyle 97x-78y=59 … … … … …i)

\displaystyle 78x-97y=116 … … … … …ii)

Add i) & ii)

\displaystyle 175x-175y=175

\displaystyle \Rightarrow x-y=1 ... ... ... ... ...iii)

Now multiply iii) by 97 and subtract iii) from i)

\displaystyle 97x-78y=59

\displaystyle (-) \underline{97x-97y=97}

\displaystyle 19y= -38

\displaystyle y= -2

Substitute \displaystyle x=y+1= -2+1=-1

Hence \displaystyle x= -1, y= -2

\displaystyle \\

Question 27: \displaystyle \frac{1}{x} + \frac{1}{y} =7 , \displaystyle \frac{1}{x} - \frac{1}{y} =1

Answer:

\displaystyle \frac{1}{x} + \frac{1}{y} =7 … … … … …i)

\displaystyle \frac{1}{x} - \frac{1}{y} =1 … … … … …ii)

Add i) & ii)

\displaystyle \frac{2}{x} =8

\displaystyle x= \frac{1}{4}

Substituting in i)

\displaystyle \frac{1}{y} =7- \frac{1}{\frac{1}{4}} =7-4=3

\displaystyle \Rightarrow y= \frac{1}{3}

Hence, \displaystyle x= \frac{1}{4} \ and\ y= \frac{1}{3}

\displaystyle \\

Question 28: \displaystyle \frac{2}{x} + \frac{10}{y} =3 , \displaystyle \frac{8}{x} - \frac{15}{y} =1

Answer:

\displaystyle \frac{2}{x} + \frac{10}{y} =3 … … … … …i)

\displaystyle \frac{8}{x} - \frac{15}{y} =1 … … … … …ii)

Multiply i) by 4 and subtract ii) from i)

\displaystyle \frac{8}{x} + \frac{40}{y} =12

\displaystyle (-) \underline{ \frac{8}{x}- \frac{15}{y}=1}

\displaystyle \frac{55}{y} =11

\displaystyle \Rightarrow y=5

Substituting

\displaystyle \frac{8}{x} =1+ \frac{15}{y} =4

\displaystyle \Rightarrow x=2

Hence \displaystyle x=2, y=5

\displaystyle \\

Question 29: \displaystyle 2x+ \frac{3}{y} =20 , \displaystyle 4x- \frac{9}{y} =10

Answer:

\displaystyle 2x+ \frac{3}{y} =20 … … … … …i)

\displaystyle 4x- \frac{9}{y} =10 … … … … …ii)

Multiply i) by 2 & then subtract ii) from i)

\displaystyle 4x+ \frac{6}{y} =40

\displaystyle (-) \underline{4x- \frac{9}{y}=10}

\displaystyle \frac{15}{y} =30

\displaystyle \Rightarrow y= \frac{1}{2}

Substituting

\displaystyle 2x=20- \frac{3}{\frac{1}{2}} = 20-6=24

\displaystyle \Rightarrow x=12

Hence \displaystyle x=12, \ and\ y= \frac{1}{2}

\displaystyle \\

Question 30: \displaystyle \frac{6}{x} -4y=9 , \displaystyle \frac{4}{x} - y=1

Answer:

\displaystyle \frac{6}{x} -4y=9 … … … … …i)

\displaystyle \frac{4}{x} - y=1 … … … … …ii)

Multiply ii) by 4 & then subtract ii) from i)

\displaystyle \frac{6}{x} - 4y=9

\displaystyle (-) \underline{\frac{16}{x}- 4y=4}

\displaystyle - \frac{10}{x} =5

\displaystyle \Rightarrow x =-2

\displaystyle y= \frac{4}{x} - 1= -2-1= -3

Hence \displaystyle x =-2, y= -3

\displaystyle \\

Question 31: \displaystyle \frac{3}{2x} - \frac{5}{3y} = \frac{7}{6} , \displaystyle \frac{4}{5x} + \frac{1}{y} =1

Answer:

\displaystyle \frac{3}{2x} - \frac{5}{3y} = \frac{7}{6} … … … … …i)

\displaystyle \frac{4}{5x} + \frac{1}{y} =1 … … … … …ii)

Multiply ii) by \displaystyle \frac{5}{3} and add i) & ii)

\displaystyle \frac{3}{2x} - \frac{5}{3y} = \frac{7}{6}

\displaystyle (+) \underline{ \frac{20}{15x}+ \frac{5}{3y}= \frac{5}{3} }

\displaystyle ( \frac{3}{2} + \frac{4}{3} )( \frac{1}{x} )=( \frac{7}{6} + \frac{5}{3} ) )

\displaystyle \frac{17}{6} ( \frac{1}{x} )= \frac{51}{18}

\displaystyle \Rightarrow x =1

Substituting \displaystyle \frac{1}{y} =1-( \frac{4}{5} )=1/5

\displaystyle \Rightarrow y=5

Hence \displaystyle x=1, y=5

\displaystyle \\

Question 32: \displaystyle \frac{3x+2}{2y+3} =\frac{1}{8} , \displaystyle \frac{x+1}{3y-2} =\frac{1}{8}

Answer:

\displaystyle \frac{3x+2}{2y+3} =\frac{1}{8} … … … … …i)

\displaystyle \frac{x+1}{3y-2} =\frac{1}{8} … … … … …ii)

Simplify i) and ii)

\displaystyle 9x+6=2y+3

\displaystyle \Rightarrow 9x-2y=-3 ... ... ... ... ...iii)

\displaystyle 8x+8=3y-2

\displaystyle \Rightarrow 8x-3y= -10 ... ... ... ... ...iv)

Multiply iii) by 3 and iv) by 2 and subtract iv) from iii)

\displaystyle 27x-6y=-9

\displaystyle (-) \underline{16x-6y= -20}

\displaystyle 11x-11

\displaystyle \Rightarrow x=1

Substituting

\displaystyle y= \frac{(9x+3)}{2} = \frac{12}{2} =6

\displaystyle \\

Question 33: \displaystyle \frac{(2x+1)}{5} - \frac{(3x-y)}{2} =y , \displaystyle \frac{(3x+2)}{2} + \frac{(2-y)}{3} =x-y

Answer:

\displaystyle \frac{(2x+1)}{5} - \frac{(3x-y)}{2} =y … … … … …i)

\displaystyle \frac{(3x+2)}{2} + \frac{(2-y)}{3} =x-y … … … … …ii)

Simplify i) and ii)

\displaystyle 2(2x+1)-5(3x-y)=10y

\displaystyle 4x+2-15x+5y=10y

\displaystyle -11x-5y= -2

\displaystyle \Rightarrow 11x+5y=2 ... ... ... ... ...iii)

\displaystyle 3(3x+2)+2(2-y)=6(x-y)

\displaystyle 9x+6+4-2y=6x-6y

\displaystyle 3x+4y=-10 ... ... ... ... ...iv)

Multiply ii) by 3 and iv) by 11 and then subtract iv) from ii)

\displaystyle 33x+15y=6

\displaystyle (-) \underline{33x+4y= -110}

\displaystyle -29y=118

\displaystyle \Rightarrow y= -4

Substituting in iii)

\displaystyle x= \frac{2-5(-4)}{11} = \frac{22}{11} =2

Hence \displaystyle x=2, y= -4