We looked at some basic concepts in our earlier published material.
Ratio
If are two quantities of the same kind and in the same units such that
then the quotient
is called the ratio between
.
Points to remember:
- Ratio
has no units and can be written as
.
- In the ratio
, we call
as the first term or antecedent and
as the second term or consequent. The second term of the ratio cannot be zero.
- In a ratio
cannot be zero. Similarly, In a ratio
cannot be zero.
- If both terms of the ratio are multiplied by or divided by the same number, the ratio does not change. The same is not true if we were to add or subtract the same number from terms of the ratio.
- A ratio must always be represented in the lowest terms. If the H.C.F of both the terms is 1, then we can say that the ratio of both the terms is the lowest.
- Also
and
are equal only if
. What that means is that the order of the terms of the ratio is important.
Increase or decrease in the ratio
If the quantity increases or decreases in the ratio , then the new resulting quantity would be
times the original quantity. Let us say that the original quantity was
, then the new quantity
Commensurable and incommensurable quantities:
If the ratio between any two quantities of the same units can be expressed in the ratios of integers, then the quantities are said to be commensurable, or else they are incommensurable quantities. So for example, are commensurable quantities while
are inconsumable quantities.
Composition of Ratios
Compound Ratio: When two or more ratios are multiplied term-wise, the ratio thus obtained is called compound ratio. Example:
For ratios and
, the compound ratio is
.
Similarly if there were three ratios, ,
and
, then the compound ratio would be
.
Duplicate Ratio: It is the compound ratio of two equal ratios.
Duplicate ratio of
= Compound ratio of
=
Triplicate Ratio: It is the compound ratio of three equal ratios.
Triplicate ratio of
= Compound ratio of
=
Sub-duplicate Ratio: For any ratio , its sub-duplicate ratio is
Sub-triplicate Ratio: For any ratio , its sub-triplicate ratio is
Reciprocal Ratio: For any ratio , where
, its reciprocal ratio
Proportion
Four non zero quantities, , are said to be in proportion if
In the above case, is the first term,
is the second term,
is the third and
is the fourth term.
and
are called the extremes and
and
are called means (middle terms).
When
In quantities
should be of the same units and
should be of the same units. Example
are in continued proportion if
. Here
is the mean proportion between
. And
is the third proportion between
.
Important Properties of Proportions