Question 1: The height of a plant is \displaystyle 80 cm and it is expected to grow at the rate of \displaystyle 20\% every month. What will be its height at the end of \displaystyle 3 \text{ months } ?

Answer:

\displaystyle P=80 \text{ cm; }  r=20\%; n=3 \text{ months }

\displaystyle A=P \Big(1+ \frac{r}{100} \Big)^n = 80 \Big(1+ \frac{20}{100} \Big)^3 = 138.24 \text{ cm }

\displaystyle \\

Question 2: The cost of a machine is supposed to depreciate each year by \displaystyle 12\% of its value at the beginning of the year. If the machine is valued at \displaystyle Rs.44,000 at the beginning of \displaystyle 2008 , find its value:

  1. At the end of \displaystyle 2009  
  2. At the beginning of \displaystyle 2007  

Answer:

\displaystyle P=44000  \text{ Rs.; }  r=12\%; n=2 \text{ years }

At the end of \displaystyle 2009  

\displaystyle A=P \Big(1- \frac{r}{100} \Big)^n = 44000 \Big(1- \frac{12}{100} \Big)^2 = 34073.6 \text{ Rs. per cm }

At the beginning of \displaystyle 2007  

\displaystyle A=P \Big(1+ \frac{r}{100} \Big)^n = 44000 \Big(1+ \frac{12}{100} \Big)^1 = 49280 \text{ Rs. per cm }

\displaystyle \\

Question 3: The value of a machine is estimated to be \displaystyle Rs.27000 at the end of \displaystyle 2004 and \displaystyle Rs.21,870 at the beginning of \displaystyle 2007 . Supposing it depreciates at a constant rate per year of its value at the beginning of the year, calculate:

  1. The rate of depreciation;
  2. The value of the machine at the beginning of \displaystyle 2004 .

Answer:

\displaystyle P=27000  \text{ Rs.; }  A= 21870  \text{ Rs.; }  r=r\%; n=2 \text{ years }

At the end of \displaystyle 2007  

\displaystyle A=P \Big(1- \frac{r}{100} \Big)^n \Rightarrow 21870= 27000 \Big(1- \frac{r}{100} \Big)^2 \Rightarrow r=10\%  

At the beginning of \displaystyle 2004  

\displaystyle A=P \Big(1- \frac{r}{100} \Big)^n \Rightarrow 27000= A \Big(1- \frac{10}{100} \Big)^1 \Rightarrow A=30000 \text{ Rs. }  

\displaystyle \\

Question 4: The value of in article decreased for two years at the rate of \displaystyle 10\% per year and then in the third year it increased by \displaystyle 10\% . Find the original value of the article, if its value at the end of \displaystyle 3 \text{ years } is \displaystyle Rs.40095 .

Answer:

\displaystyle P=P  \text{ Rs.; }  A= A  \text{ Rs.; }  r=10\%; n=2 \text{ years }

At the end of \displaystyle 2^{nd} year  

\displaystyle A=P \Big(1- \frac{r}{100} \Big)^n \Rightarrow P= A \Big(1- \frac{10}{100} \Big)^2 \Rightarrow P=0.81A  

At the end of \displaystyle 3^{rd} Year  

\displaystyle A=P \Big(1- \frac{r}{100} \Big)^n \Rightarrow 40095= 0.81A \Big(1+ \frac{10}{100} \Big)^1 \Rightarrow A=45000 \text{ Rs. }  

\displaystyle \\

Question 5: According to a census taken towards the end of the year \displaystyle 2009 , the population of a rural town was found to be \displaystyle 64000 . The census authority also found that the population of this particular town had a growth of \displaystyle 5\% per annum. In how many years after \displaystyle 2009 did the population of this town reach \displaystyle 74088 ?

Answer:

\displaystyle P=64000. A= 74088; r=5\%; n=n \text{ years }

At the end of \displaystyle n^{nd} year  

\displaystyle A=P \Big(1- \frac{r}{100} \Big)^n \Rightarrow 74088= 64000 \Big(1+ \frac{5}{100} \Big)^n \Rightarrow n=3  

\displaystyle \\

Question 6: The population of a town decreased by \displaystyle 12\% during \displaystyle 1998 and then increased by \displaystyle 8\% during \displaystyle 1999 . Find the population of the town, at the beginning of \displaystyle 1998 , if at the end of \displaystyle 1999 its population was \displaystyle 2,85,120 .

Answer:

At the end of \displaystyle 1999 \text{ year }

\displaystyle P=P; A= 285120; r=8\%; n=1 \text{ years }

\displaystyle A=P \Big(1- \frac{r}{100} \Big)^n \Rightarrow 285120=P \Big(1+ \frac{8}{100} \Big)^1 \Rightarrow P=264000  

At the beginning of \displaystyle 1998 Year  

\displaystyle P=P; A= 26400; r=8\%; n=1 \text{ years }

\displaystyle A=P \Big(1- \frac{r}{100} \Big)^n \Rightarrow 264000= P \Big(1- \frac{12}{100} \Big)^1 \Rightarrow P=300000  

\displaystyle \\

Question 7: A sum of money, invested at compound interest, amounts to \displaystyle Rs.16,500 in \displaystyle 1 \text{ year } and to \displaystyle Rs.19965 in \displaystyle 3 \text{ years } . Find the rate per cent and the original sum of money.

Answer:

\displaystyle P=16500; A= 19965; r=r\%; n=2 \text{ years }

\displaystyle A=P \Big(1- \frac{r}{100} \Big)^n \Rightarrow 19965=16500 \Big(1+ \frac{r}{100} \Big)^2 \Rightarrow r=10\%  

\displaystyle \\

Question 8: The difference between C.I. and S.I. on \displaystyle Rs.7500 for two years is \displaystyle Rs.12 at the same rate of interest per annum. Find the rate of interest.

Answer:

Simple Interest

\displaystyle P=7500  \text{ Rs.; }  T=2 \text{ years;  }  r=x\%  

\displaystyle S.I=7500 \times \frac{x}{100} \times 2 = 150x  

Compound Interest

\displaystyle P=7500; A= A; r=x\%; n=2 \text{ years }

\displaystyle A= 7500 \times \Big(1+ \frac{x}{100} \Big)^2  

\displaystyle C.I. = 7500 \times \Big(1+ \frac{x}{100} \Big)^2 - 7500  

\displaystyle \text{Given  }  C.I. - S.I. = 12 \Rightarrow 7500 \times \Big(1+ \frac{x}{100} \Big)^2 - 7500 - 150x = 12  

\displaystyle \Rightarrow 7500+7500 \times \frac{x^2}{10000} + 7500 \times 2 \times \frac{x}{100} - 7500 -150x = 12  

\displaystyle \Rightarrow 0.75x^2=12  

\displaystyle \Rightarrow x= 4%  

\displaystyle \\

Question 9: A sum of money lent out at C.I. at a certain rate per annum becomes three times of itself in \displaystyle 10 \text{ years } . Find in how many years will the money become twenty-seven times of itself of the same rate of interest p.a.

Answer:

After 10 Years

\displaystyle P=3A; A= A; r=x\%; n=10 \text{ years }

\displaystyle 3A=A \times \Big(1+ \frac{x}{100} \Big)^{10}  

\displaystyle \Big(1+ \frac{x}{10} \Big)=3^{\frac{1}{10}} ... ... ... ... ... ... ... ... i)  

After n Years

\displaystyle P=27A; A= A; r=x\%; n=n \text{ years }

\displaystyle 27A=A \times \Big(1+ \frac{x}{100} \Big)^n  

\displaystyle 27=1 \times \Big(1+ \frac{x}{100} \Big)^n  

Substituting from i)

\displaystyle 27=1 \times \Big(3^{\frac{1}{10}} \Big)^n \Rightarrow n=30 \text{ years }

\displaystyle \\

Question 10: Sharma borrowed a certain sum of money at \displaystyle 10\% per annum compounded annually. If by paying \displaystyle Rs.19360 at the end of the second year and \displaystyle Rs.31,944 at the end of the third he clears the debt; find the sum borrowed by him.

Answer:

\displaystyle P=x; A= A; r=10\%; n=2 \text{ years }

\displaystyle A= x \times \Big(1+ \frac{10}{100} \Big)^2 \Rightarrow A= 1.21x  

Third year

\displaystyle P=(1.21x-19360); A=31944 ; r=10\%; n=1 \text{ years }

\displaystyle 31944= (1.21x-19360) \times \Big(1+ \frac{10}{100} \Big)^1 \Rightarrow x= 40000 \text{ Rs. }  

\displaystyle \\

Question 11: The difference between compound interest for a year payable half-yearly and simple interest on a certain sum of money lent out at \displaystyle 10\% for a year is \displaystyle Rs.15 . Find the sum of money lent out. [1998]

Answer:

Simple Interest

\displaystyle P=x  \text{ Rs.; }  T=1 \text{ years;  }  r=10\%  

\displaystyle S.I=x \times \frac{10}{100} \times 1 = 0.1x  

Compound Interest

\displaystyle P=x; A= A; r=10\%; n=2 \text{ half years }  

\displaystyle A= x \times \Big(1+ \frac{10}{200} \Big)^2 = x \times \Big( \frac{21}{20} \Big)^2  

\displaystyle C.I. = x \times \Big( \frac{21}{20} \Big)^2 - x  

\displaystyle \text{Given  }  C.I. - S.I. = x \times \Big( \frac{21}{20} \Big)^2 - x - 0.1x = 15  

\displaystyle \Rightarrow x= 6000 \text{ Rs. }  

\displaystyle \\

Question 12: The ages of Person 1 and Person 2 are \displaystyle 16 \text{ years } and \displaystyle 18 \text{ years } respectively. In what ratio must they invest money at \displaystyle 5\% p.a. compounded yearly so that both get the same sum on attaining the age of \displaystyle 25 \text{ years } ?

Answer:

Person 1:

\displaystyle P=x; A= P1; r=5\%; n=9 \text{ years }

\displaystyle P1= x \times \Big(1+ \frac{5}{100} \Big)^9  

Person 2:

\displaystyle P=x; A= P2; r=5\%; n=7 \text{ years }

\displaystyle P2= x \times \Big(1+ \frac{5}{100} \Big)^7  

\displaystyle \text{Given  }  P1=P2  

\displaystyle P1:P2 = x \times \Big(1+ \frac{5}{100} \Big)^9 : x \times \Big(1+ \frac{5}{100} \Big)^7 = 441:400