Question 1: In each of the following cases, find the remainder when

\displaystyle \text{i) } x^4-3x^2+2x+1 \text{ is divided by } (x-1)  

\displaystyle \text{ii) } x^3+3x^2-12x+4 \text{ is divided by } (x-2)  

\displaystyle \text{iii) } x^4+1 \text{ is divided by } (x+1)  

Answer:

i) Required Remainder = Value of given polynomial \displaystyle x^4-3x^2+2x+1 \text{ for } x = 1  

\displaystyle \text{Therefore Remainder } = (1)^4-3(1)^2+2(1)+1 = 1  

ii) Required Remainder = Value of given polynomial \displaystyle x^3+3x^2-12x+4 \text{ for } x = 2  

\displaystyle \text{Therefore Remainder } = (2)^3+3(2)^2-12(2)+4 = 0  

iii) Required Remainder = Value of given polynomial \displaystyle x^4+1 \text{ for } x = -1  

\displaystyle \text{Therefore Remainder } = (-1)^4+1 = 2  

\displaystyle \\

Question 2: Show that

\displaystyle \text{i) } (x-2) \text{ is a factor of } 5x^2+15x-50  

\displaystyle \text{ii) } (3x+2) \text{ is a factor of } 3x^2-x-2  

Answer:

\displaystyle \text{i) } \text{If } (x-2) \text{ is a factor of } 5x^2+15x-50 , then the remainder should be \displaystyle 0 \text{ for } x = 2  

\displaystyle \text{Remainder } = 5(2)^2+15(2)-50 = 50-50=0  

\displaystyle \text{Hence } (x-2) \text{ is a factor of } 5x^2+15x-50  

\displaystyle \text{ii) } \text{If } (3x+2) \text{ is a factor of } 3x^2-x-2 , then the remainder should be \displaystyle 0 \text{ for } x = - \frac{2}{3}  

\displaystyle \text{Remainder } = 3(- \frac{2}{3} )^2-(- \frac{2}{3} )-2 = \frac{4}{3} + \frac{2}{3} -2 = 0  

\displaystyle \text{Hence } (3x+2) \text{ is a factor of } 3x^2-x-2  

\displaystyle \\

Question 3: Find which of the following is a factor of \displaystyle 2x^3+3x^2-5x-6  

\displaystyle \text{i) } (x+1) \displaystyle \text{ii) } (2x-1) \displaystyle \text{iii) } (x+2)  

Answer:

\displaystyle \text{i) } \text{If } (x+1) \text{ is a factor of } 2x^3+3x^2-5x-6 , then the remainder should be \displaystyle 0 \text{ for } x =-1  

\displaystyle \text{Remainder } = 2(-1)^3+3(-1)^2-5(-1)-6 = -2+3+5-6=0  

\displaystyle \text{Hence } (x+1) \text{ is a factor of } 2x^3+3x^2-5x-6  

\displaystyle \text{ii) } \text{If } (2x-1) \text{ is a factor of } 2x^3+3x^2-5x-6 , then the remainder should be \displaystyle 0 \text{ for } x = \frac{1}{2}  

\displaystyle \text{Remainder } = 2( \frac{1}{2} )^3+3( \frac{1}{2} )^2-5( \frac{1}{2} )-6 = 1- \frac{3}{2} -6 \neq 0  

\displaystyle \text{Hence } (2x-1) is NOT a factor of \displaystyle 2x^3+3x^2-5x-6  

\displaystyle \text{iii) } \text{If } (x+2) \text{ is a factor of } 2x^3+3x^2-5x-6 , then the remainder should be \displaystyle 0 \text{ for } x =-2  

\displaystyle \text{Remainder } = 2(-2)^3+3(-2)^2-5(-2)-6 = -16+12+10-6= 0  

\displaystyle \text{Hence } (x+2) \text{ is a factor of } 2x^3+3x^2-5x-6  

\displaystyle \\

Question 4: Find the value of \displaystyle a \text{ or } k if

\displaystyle \text{i) } (2x+1) \text{ is a factor of } 2x^2+ax-3  

\displaystyle \text{ii) } (3x-4) \text{ is a factor of } 3x^2+2x-k  

\displaystyle \text{iii) } (2x+1) \text{ is a factor of } (3k+2)x^3+(k-1)  

\displaystyle \text{iv) } (x-2) \text{ is a factor of } 2x^5-6x^4-2ax^3+6ax^2+4ax+8  

Answer:

\displaystyle \text{i) } (2x+1) \text{is a factor } \Rightarrow x = - \frac{1}{2}  

\displaystyle \text{Therefore Remainder } =0 \text{ for } x = - \frac{1}{2}  

\displaystyle \Rightarrow 2( - \frac{1}{2} )^2+a( - \frac{1}{2} )-3 = 0  

\displaystyle \Rightarrow \frac{1}{2} - \frac{a}{2} -3=0  

\displaystyle \Rightarrow 1-a-6=0  

\displaystyle \Rightarrow a = 5  

\displaystyle \text{ii) } (3x-4) \text{is a factor } \Rightarrow x = \frac{4}{3}  

\displaystyle \text{Therefore Remainder } =0 \text{ for } x = \frac{4}{3}  

\displaystyle \Rightarrow 3( \frac{4}{3} )^2+2( \frac{4}{3} )-k=0  

\displaystyle \Rightarrow \frac{16}{3} + \frac{8}{3} -k=0  

\displaystyle \Rightarrow k = 8  

\displaystyle \text{iii) } \text{If } (2x+1) \text{is a factor } \Rightarrow x = - \frac{1}{2}  

\displaystyle \text{Therefore Remainder } =0 \text{ for } x = - \frac{1}{2}  

\displaystyle \Rightarrow (3k+2)(- \frac{1}{2} )^3+(k-1)=0  

\displaystyle \Rightarrow -3k-2+8k-8=0  

\displaystyle \Rightarrow k = 2  

\displaystyle \text{iv) } \text{If } (x-2) \text{is a factor } \Rightarrow x = 2  

\displaystyle \text{Therefore Remainder } = 0 \text{ for } x =2  

\displaystyle \Rightarrow 2(2)^5-6(2)^4-2a(2)^3+6a(2)^2+4a(2)+8  

\displaystyle \Rightarrow 64-96-16a+24a+8a+8 = 0  

\displaystyle \Rightarrow a = \frac{24}{16} = \frac{3}{2}  

\displaystyle \\

Question 5: Find the value of \displaystyle a \text{ and } b , when

\displaystyle \text{i) } (x-2) \text{ and } (x+3) \text{ are both factors of } x^3+ax^2+bx-12  

\displaystyle \text{ii) } (x-1) \text{ and } (x+2) \text{ are both factors of } x^3+(3a+1)x^2+bx-18  

Answer:

\displaystyle \text{i) } \text{If } (x-2) is a factor

\displaystyle \Rightarrow (2)^3+a(2)^2+b(2)-12=0  

\displaystyle \Rightarrow 8+4a+2b-12=0  

\displaystyle \Rightarrow 2a+b=2 … … … … … i)

Similarly, \displaystyle \text{If } (x+3) is a factor

\displaystyle \Rightarrow (-3)^3+a(-3)^2+b(-3)-12=0  

\displaystyle \Rightarrow -27+pa-3b-12=0  

\displaystyle \Rightarrow 3a-b=13 … … … … … ii)

Solving i) and ii) we get \displaystyle a = 3 \text{ and } b =-4  

\displaystyle \text{ii) } \text{If } (x-1) is a factor

\displaystyle \Rightarrow (1)^3+(3a+1)(1)^2+b(1)-18=0  

\displaystyle \Rightarrow 1 + 3a+1+b-18=0  

\displaystyle \Rightarrow 3a+b=16 … … … … … i)

\displaystyle \text{If } (x+2) is a factor

\displaystyle \Rightarrow (-2)^3+(3a+1)(-2)^2+b(-2)-18=k  

\displaystyle \Rightarrow -8+12a+4-2b-18=0  

\displaystyle \Rightarrow 6a-b=11 … … … … … ii)

Solving i) and \displaystyle \text{ii) } a = 3 \text{ and }  b = 7  

\displaystyle \\

Question 6: \displaystyle \text{When } x^3+2x^2-kx+4 \text{ is divided by } (x-2) , the remainder is \displaystyle k . Find \displaystyle k .

Answer:

\displaystyle \text{When } x = 2, , \displaystyle \text{Remainder } = 0  

\displaystyle (2)^3+2(2)^2-k(2)+4 = k  

\displaystyle \Rightarrow 20-2k = k  

\displaystyle \Rightarrow k = \frac{20}{3}  

\displaystyle \\

Question 7: Find the value of \displaystyle a , if the division of \displaystyle ax^3+9x^2+4x-10 by \displaystyle (x+3) leaves a remainder of \displaystyle 5 .

Answer:

\displaystyle \text{When } x = -3, , \displaystyle \text{Remainder } = 5  

\displaystyle a(-3)^3+9(-3)^2+4(-3)-10 = 5  

\displaystyle \Rightarrow -27a+81-12-10=5  

\displaystyle \Rightarrow 27a = 54  

\displaystyle \Rightarrow a = 2  

\displaystyle \\

Question 8: \displaystyle \text{If } x^3+ax^2+bx+6 has \displaystyle (x-2) as a factor and leaves a remainder of \displaystyle 3 when divided by \displaystyle (x-3) , find the value of \displaystyle a \text{ and } b . [2005]

Answer:

\displaystyle \text{When } x=2 , \displaystyle \text{Remainder } = 0  

\displaystyle \Rightarrow (2)^3+a(2)^2+b(2)+6 = 0  

\displaystyle \Rightarrow 4a+2b = - 14 … … … … … i)

\displaystyle \text{When } x = 3 , \displaystyle \text{Remainder } = 3  

\displaystyle \Rightarrow (3)^3+a(3)^2+b(3)+6 = 3  

\displaystyle \Rightarrow 9a+3b=-30 … … … … … ii)

Solving i) and \displaystyle \text{ii) } a = -3 \text{ and } b = -1  

\displaystyle \\

\displaystyle \text{Question 9: Find the value of } a \text{ and } b  \text{, When } 2x^3+ax^2+bx-2 \\ \\ \text{ leaves a Remainder } 7 \text{ and } 0 \text{ when divided by } (2x-3) \text{ and } (x+2) \text { respectively. }

Answer:

\displaystyle \text{When } x= \frac{3}{2}  \text{, Remainder } = 7  

\displaystyle \Rightarrow 2(\frac{3}{2})^3+a(\frac{3}{2})^2+b(\frac{3}{2})-2 = 7  

\displaystyle \Rightarrow 27+9a+6b-8=28  

\displaystyle \Rightarrow 3a+2b=3 … … … … … i)

\displaystyle \text{When } x = -2 , \displaystyle \text{Remainder } = 0  

\displaystyle \Rightarrow 2(-2)^3+a(-2)^2+b(-2)-2= 0  

\displaystyle \Rightarrow -16+4a-2b-2=0  

\displaystyle \Rightarrow 2a-b=-9 … … … … … ii)

Solving i) and \displaystyle \text{ii) } a = 3 \text{ and } b = -3  

\displaystyle \\

Question 10: What number should be added to \displaystyle 3x^3-5x^2+6x , so that when it is divided by \displaystyle (x-3) , the remainder is \displaystyle 8 .

Answer:

\displaystyle \text{Let } a be added to \displaystyle 3x^3-5x^2+6x , so that when it is divided by \displaystyle (x-3) , the remainder is \displaystyle 8  

\displaystyle \text{When } x =3 , Remainder is \displaystyle 8  

\displaystyle \Rightarrow 3(3)^3-5(3)^2+6(3)+a=8  

\displaystyle \Rightarrow 81-45+18+a=8  

\displaystyle \Rightarrow a = -46  

\displaystyle \\

Question 11: What number should be subtracted to \displaystyle x^3+3x^2-8x+14 , so that when it is divided by \displaystyle (x-2) , the remainder is \displaystyle 10 .

Answer:

\displaystyle \text{Let } a be subtracted to \displaystyle x^3+3x^2-8x+14 , so that when it is divided by \displaystyle (x-2) , the remainder is \displaystyle 10  

\displaystyle \text{When } x =2 , Remainder is \displaystyle 10  

\displaystyle \Rightarrow (2)^3+3(2)^2-8(2)+14-a=10  

\displaystyle \Rightarrow 8+12-16+14-a=10  

\displaystyle \Rightarrow a = 8  

\displaystyle \\

Question 12: The polynomials \displaystyle 2x^3-7x^2+ax-6 and \displaystyle x^3-8x^2+(2a+1)x-16 leave the same remainder when divided by \displaystyle (x-2) . Find the value of \displaystyle a .

Answer:

\displaystyle \text{For polynomial } 2x^3-7x^2+ax-6 :

\displaystyle \text{When } x =2  \text{, Remainder } = 2(2)^3-7(2)^2+a(2)-6 = 2a-18  

\displaystyle \text{For polynomial } x^3-8x^2+(2a+1)x-16 :

\displaystyle \text{When } x =2  \text{, Remainder } = (2)^3-8(2)^2+(2a+1)(2)-16 = 4a-38  

Therefore \displaystyle 2a-18=4a-38 \Rightarrow a = 10  

\displaystyle \\

Question 13: \displaystyle \text{If } (x-2) is a factor of the expression \displaystyle 2x^3+ax^2+bx-14 and when the expression is divided by \displaystyle (x-3) , it leaves a \displaystyle \text{Remainder } 52 . Find the value of \displaystyle a \text{ and }  b . [2013]

Answer:

\displaystyle \text{When } x=2 , \displaystyle \text{Remainder } = 0  

\displaystyle \Rightarrow 2(2)^3+a(2)^2+b(2)-14=0  

\displaystyle \Rightarrow 4a+2b=02  

\displaystyle \Rightarrow 2a+b=-1 … … … … … i)

\displaystyle \text{When } x = 3 , \displaystyle \text{Remainder } = 52  

\displaystyle \Rightarrow 2(3)^3+a(3)^2+b(3)-14=52  

\displaystyle \Rightarrow 9a+3b=12  

\displaystyle \Rightarrow 3a+b=4 … … … … … ii)

Solving i) and ii), we get \displaystyle a = 5 \text{ and } b = -11  

\displaystyle \\