Question 1: Find the mid-point of the line segment joining the points :

\displaystyle \text{(i) } (-6, 7) \text{ and } (3, 5)  

\displaystyle \text{(ii) } (5, -3) \text{ and } (-1, 7)  

Answer:

i) Ratio for being a midpoint: \displaystyle m_1:m_2 = 1:1  

Let the coordinates of the point \displaystyle P \text{ be } (x, y)  

Therefore

\displaystyle x = \frac{1 \times 3+1 \times (-6)}{1+1} = -1.5  

\displaystyle y = \frac{1 \times 5+1 \times 7}{1+1} = 6  

\displaystyle \text{Therefore } P = (-1.5, 6)  

ii) Ratio for being a midpoint: \displaystyle m_1:m_2 = 1:1  

Let the coordinates of the point \displaystyle P \text{ be } (x, y)  

Therefore

\displaystyle x = \frac{1 \times (-1)+1 \times (5)}{1+1} = 2  

\displaystyle y = \frac{1 \times 7+1 \times (-3)}{1+1} = 2  

\displaystyle \text{Therefore } P = (2, 2)  

\displaystyle \\

Question 2: Points \displaystyle A \text{ and } B have co-ordinates \displaystyle (3, 5) \text{ and } (x, y) respectively. The mid-point of \displaystyle AB is \displaystyle (2, 3) .Find the values of \displaystyle x \text{ and } y

Answer:

\displaystyle \text{Given Midpoint of }  AB = (2, 3)  

Therefore

\displaystyle 2 = \frac{1 \times x+1 \times (3)}{1+1} \Rightarrow x = 1  

\displaystyle 3 = \frac{1 \times y+1 \times (5)}{1+1} \Rightarrow y = 1  

\displaystyle \text{Therefore } B = (1, 1)  

\displaystyle \\

Question 3: \displaystyle A (5, 3), B (-1, 1) \text{ and } C (7, -3) are the vertices of triangle \displaystyle ABC .If \displaystyle L is the mid-point of \displaystyle AB \text{ and } M is the mid-point of \displaystyle AC , show that \displaystyle LM = \frac{1}{2}BC

Answer:

Ratio for being a midpoint: \displaystyle m_1:m_2 = 1:1  

Let the coordinates of the point \displaystyle L \text{ be } (x_1, y_1)  

Therefore

\displaystyle x_1 = \frac{1 \times (-1)+1 \times (5)}{1+1} = 2  

\displaystyle y_1 = \frac{1 \times 1+1 \times (3)}{1+1} = 2  

\displaystyle \text{Therefore } L = (2, 2)  

Similarly

Let the coordinates of the point \displaystyle M \text{ be } (x_2, y_2)  

Therefore

\displaystyle x_2 = \frac{1 \times (7)+1 \times (5)}{1+1} = 6  

\displaystyle y_2 = \frac{1 \times (-3)+1 \times (3)}{1+1} = 0  

\displaystyle \text{Therefore } M = (6, 0)  

\displaystyle \text{Length of }  LM = \sqrt{(6-2)^2+(0-2)^2} = \sqrt{20}  

\displaystyle \text{Length of }  BC = \sqrt{(7-(-1))^2+(-3-1)^2} = \sqrt{80} = 2\sqrt{20}  

\displaystyle \text{Hence }  LM = \frac{1}{2} BC  

\displaystyle \\

Question 4: \displaystyle \text{Given } M is the mid-point of \displaystyle AB , find the co-ordinates of :

\displaystyle \text{(i) } A\text{; if  } M = (1, 7) \text{ and } B = (-5, l0)  

\displaystyle \text{(ii) } B\text{; if  } A = (3, -1) \text{ and } M = (-1, 3)  

Answer:

i) \displaystyle \text{Given Midpoint of }  AB = (1, 7)  \text{ and let }  A=(x,y)  

Therefore

\displaystyle 1 = \frac{1 \times (-5)+1 \times (x)}{1+1} \Rightarrow x = 7  

\displaystyle 7 = \frac{1 \times (10)+1 \times (y)}{1+1} \Rightarrow y = 4  

\displaystyle \text{Therefore } A = (7, 4)  

ii) \displaystyle \text{Given Midpoint of }  AB = (-1, 3)  \text{ and let }  A=(x, y)  

Therefore

\displaystyle -1 = \frac{1 \times x+1 \times (3)}{1+1} \Rightarrow x = -5  

\displaystyle 3 = \frac{1 \times y+1 \times (-1)}{1+1} \Rightarrow y = 7  

\displaystyle \text{Therefore } B = (-5, 7)  

\displaystyle \\

Question 5: \displaystyle P (-3, 2) is the midpoint of line segment \displaystyle AB as shown in the given figure. Find the co-ordinates of Points \displaystyle A \text{ and } B

Answer:

\displaystyle \text{Given Midpoint of }  AB = (-1, 3)  \text{ and let }  A=(0, y) \text{ and } B =(x, 0)  

Therefore

\displaystyle -3 = \frac{1 \times x+1 \times (0)}{1+1} \Rightarrow x = -6  

\displaystyle 2 = \frac{1 \times y+1 \times (0)}{1+1} \Rightarrow y = 4  

\displaystyle \text{Therefore } B = (-6, 0) \text{ and } A=(0, 4)  

\displaystyle \\

Question 6: In the given figure, \displaystyle P (4, 2) is mid-point of line segment \displaystyle AB .Find the co-ordinates of \displaystyle A (x, 0) \text{ and } B (0, y)

Answer:

\displaystyle \text{Given Midpoint of }  AB = (4, 2)  \text{ and let }  A=(x,0) \text{ and } B =(0,y)  

Therefore

\displaystyle 4 = \frac{1 \times x+1 \times (0)}{1+1} \Rightarrow x = 8  

\displaystyle 2 = \frac{1 \times (0)+1 \times y}{1+1} \Rightarrow y = 4  

\displaystyle \text{Therefore } A = (8, 0) \text{ and } B= (0, 4)  

\displaystyle \\

Question 7: \displaystyle (-5,2), (3, -6) \text{ and } (7,4) are the vertices of a triangle. Find the length of its median though the vertex \displaystyle (3, -6)

Answer:

\displaystyle \text{Let }  P(x, y) .be the midpoint of \displaystyle BC .

\displaystyle x = \frac{1 \times (7)+1 \times (3)}{1+1} = 5  

\displaystyle y = \frac{1 \times (4)+1 \times (-6)}{1+1} = -1  

\displaystyle \text{Therefore } P = (5, -1)  

Therefore

\displaystyle \text{Length of }  AP = \sqrt{(7-(-5))^2+(-1-2)^2} = \sqrt{100+9} = \sqrt{109}  

\displaystyle \\

Question 8: Given a line \displaystyle ABCD in which \displaystyle AB = BC = CD B=(0, 3) \text{ and } C=(1, 8) . Find the co-ordinates of \displaystyle A \text{ and } D

Answer:

\displaystyle \text{For }  A(x_1, y_1)  

\displaystyle \text{Ratio }  =1:1  

\displaystyle 0 = \frac{1 \times (1) +1 \times x_1}{1+1} \Rightarrow x_1 = -1  

\displaystyle 3 = \frac{1 \times (8) +1 \times (y_1)}{1+1} \Rightarrow y_1 = -2  

\displaystyle \text{Hence the coordinates of }  A = (-1, -2)  

\displaystyle \text{For }  D(x_2, y_2)  

\displaystyle \text{Ratio }  =1:1  

\displaystyle 1 = \frac{1 \times (x_2) +1 \times (0)}{1+1} \Rightarrow x_2 = 2  

\displaystyle 8 = \frac{1 \times (y_2) +1 \times (3)}{1+1} \Rightarrow y_2 = 13  

\displaystyle \text{Hence the coordinates of }  D = (2, 13)  

\displaystyle \\

Question 9: One end of the diameter of a circle is \displaystyle (-2, 5) Find the co-ordinates of the other end of it, if the center of the circle is \displaystyle (2, -1)

Answer:

\displaystyle \text{Let }  P(x, y) be the other end of the diameter

\displaystyle 2 = \frac{1 \times (-2) +1 \times x}{1+1} \Rightarrow x = 6  

\displaystyle -1 = \frac{1 \times (5) +1 \times (y)}{1+1} \Rightarrow y = -7  

Hence the coordinates of the other point of the diameter is \displaystyle (6, -7)  

\displaystyle \\

Question 10: \displaystyle A (2,5), B (1,0), C (-4,3) \text{ and } D (-3,8) are the vertices of quadrilateral \displaystyle ABCD .Find the co-ordinates of the midpoint of \displaystyle AC \text{ and } BD .Give a special name to the quadrilateral.

Answer:

\displaystyle \text{Let }  P(x_1, y_1) be the midpoint of \displaystyle AC .

\displaystyle x_1 = \frac{1 \times (-4)+1 \times (2)}{1+1} = -1  

\displaystyle y_1 = \frac{1 \times (3)+1 \times (5)}{1+1} = 4  

\displaystyle \text{Therefore } P = (-1, 4)  

\displaystyle \text{Let }  M(x_2, y_2) .be the midpoint of \displaystyle BD .

\displaystyle x_2 = \frac{1 \times (1)+1 \times (-3)}{1+1} = -1  

\displaystyle y_2 = \frac{1 \times (0)+1 \times (8)}{1+1} = 4  

\displaystyle \text{Therefore } M = (-1, 4)  

Because the diagonals bisect each other, the quadrilateral is a Parallelogram.

\displaystyle \\

Question 11: \displaystyle P (4, 2) \text{ and } Q (-1, 5) are the vertices of parallelogram \displaystyle PQRS \text{ and } (-3, 2) are the co-ordinates of the point of intersection of its diagonals. Find co-ordinates of \displaystyle R \text{ and } S

Answer:

\displaystyle \text{Given Midpoint of }  PR = M(-3, 2)  \text{ and let }  S=(x_1, y_1)  

Therefore

\displaystyle -3 = \frac{1 \times x_1+1 \times (4)}{1+1} \Rightarrow x_1 = -10  

\displaystyle 2 = \frac{1 \times y_1+1 \times (2)}{1+1} \Rightarrow y_1 = 2  

\displaystyle \text{Therefore } R = (-10, 2)  

\displaystyle \text{Given Midpoint of }  SQ = M(-3, 2)  \text{ and let }  S=(x_2, y_2)  

Therefore

\displaystyle -3 = \frac{1 \times x_2+1 \times (-1)}{1+1} \Rightarrow x_2 = -5  

\displaystyle 2 = \frac{1 \times (5)+1 \times y_2}{1+1} \Rightarrow y_2 = -1  

\displaystyle \text{Therefore } S = (-5, -1)  

\displaystyle \\

Question 12: \displaystyle A (-1, 0), B (1, 3) \text{ and } D (3, 5) are the vertices of a parallelogram \displaystyle ABCD . Find the co-ordinates of vertex \displaystyle C

Answer:

\displaystyle \text{Let }  M(x, y) be the midpoint of \displaystyle BD

\displaystyle x = \frac{1 \times (1)+1 \times (3)}{1+1} = 2  

\displaystyle y = \frac{1 \times (3)+1 \times (5)}{1+1} = 4  

\displaystyle \text{Therefore } M = (2, 4)  

\displaystyle \text{Given Midpoint of }  AC = M(2,4)  \text{ and let }  C=(x, y)  

Therefore

\displaystyle 2 = \frac{1 \times x+1 \times (-1)}{1+1} \Rightarrow x = 5  

\displaystyle 4 = \frac{1 \times (y)+1 \times (0)}{1+1} \Rightarrow y = 8  

\displaystyle \text{Therefore } C = (5, 8)  

\displaystyle \\

Question 13: The points \displaystyle (2, -1), (-1,4) \text{ and } (-2,2) are midpoints of the sides of a triangle. Find its vertices.

Answer:

Let the vertices of the triangle be \displaystyle B(x_1, y_1), C(x_2, y_2) \text{ and } A(x_3, y_3)  

\displaystyle \text{Given Midpoint of }  BC = P(2,-1)  

Therefore

\displaystyle 2 = \frac{1 \times x_1+1 \times x_2}{1+1} \Rightarrow x_1+x_2 = 4 \ \ \cdots \ \cdots \ \cdots \ i)

\displaystyle -1 = \frac{1 \times (y_1)+1 \times (y_2)}{1+1} \Rightarrow y_1+y_2 = -2 \ \ \cdots \ \cdots \ \cdots \ ii)

\displaystyle \text{Given Midpoint of }  AC = Q(-1, 4)  

Therefore

\displaystyle -1 = \frac{1 \times x_2+1 \times x_3}{1+1} \Rightarrow x_2+x_3 = -2 \ \ \cdots \ \cdots \ \cdots \ iii)

\displaystyle 4 = \frac{1 \times (y_2)+1 \times (y_3)}{1+1} \Rightarrow y_2+y_3 = -4 \ \ \cdots \ \cdots \ \cdots \ iv)

\displaystyle \text{Given Midpoint of }  AB = R(-2, 2)  

Therefore

\displaystyle -2 = \frac{1 \times x_3+1 \times x_1}{1+1} \Rightarrow x_3+x_1 = -4 \ \ \cdots \ \cdots \ \cdots \ v)

\displaystyle 2 = \frac{1 \times (y_3)+1 \times (y_1)}{1+1} \Rightarrow y_3+y_1 = 4 \ \ \cdots \ \cdots \ \cdots \ vi)

Adding i), iii) and v) we get

\displaystyle x_1+x_2+x_3=-1 \ \ \cdots \ \cdots \ \cdots \ vii)

Adding ii), iv) and vi) we get

\displaystyle y_1+y_2+y_3=5 \ \ \cdots \ \cdots \ \cdots \ viii)

Using i), iii), v) and vii) we get

\displaystyle x_1=1, x_2=3 \text{ and } x_3=-5  

Similarly Using ii), iv), vi) and viii) we get

\displaystyle y_1=-3, y_2=1 \text{ and } y_3=7  

Hence the vertices are \displaystyle (1, -3), (3, 1) \text{ and } (-5, 7)  

\displaystyle \\

Question 14: Points \displaystyle A (-5, x), B (y, 7) \text{ and } C (1, -3) are collinear (i.e. lie on the same straight line) such that \displaystyle AB = BC .Calculate the values of \displaystyle x \text{ and } y

Answer:

\displaystyle \text{Given } B is the midpoint of \displaystyle AC .Therefore

\displaystyle y = \frac{1 \times (1)+1 \times (-5)}{1+1} = -2  

\displaystyle 7 = \frac{1 \times (-3)+1 \times x}{1+1} \Rightarrow x = 17  

\displaystyle \text{Therefore } A = (-5, 17) \text{ and } B=(-2, 7)  

\displaystyle \\

Question 15: Points \displaystyle P (a, -4), Q (2, b) \text{ and } R (0, 2) are collinear. If \displaystyle Q lies between \displaystyle P \text{ and } R , such that \displaystyle PR = 2QR , calculate the values of \displaystyle a \text{ and } b

Answer:

\displaystyle \text{Given } Q is the midpoint of \displaystyle PR .Therefore

\displaystyle -2 = \frac{1 \times (0)+1 \times a}{1+1} \Rightarrow a = -4  

\displaystyle b = \frac{1 \times (2)+1 \times (-4)}{1+1} = -1  

\displaystyle \text{Therefore } a=-4 \text{ and } b=-1  

\displaystyle \\

Question 16: Calculate the co-ordinates of the centroid of the triangle \displaystyle ABC , if \displaystyle A = (7, -2), B = (0, l) \text{ and } C=(-1,4)

Answer:

\displaystyle \text{Let }  O be the centroid of triangle \displaystyle ABC .

Therefore

\displaystyle x= \frac{7+0+(-1)}{3} = 2  

\displaystyle y = \frac{(-2)+4+1}{3} =1  

Hence the coordinates of the centroid are \displaystyle (2, 1)  

\displaystyle \\

Question 17: The co-ordinates of the centroid of a triangle \displaystyle PQR are \displaystyle (2, -5) .lf \displaystyle Q = (-6, 5) \text{ and } R = (11,8) ; calculate the co-ordinates of vertex \displaystyle P

Answer:

\displaystyle \text{Given } O(2, -5) be the centroid of triangle \displaystyle PQR

Therefore

\displaystyle 2= \frac{1+x+(-6)}{3} \Rightarrow x = 1  

\displaystyle -5 = \frac{y+8+5}{3} \Rightarrow y = -28  

Hence the coordinates of P are \displaystyle (1, -28)  

\displaystyle \\

Question 18: \displaystyle A (5, x), B (-4, 3) \text{ and } C (y, -2) are the vertices of the triangle \displaystyle ABC whose centroid is the origin. Calculate the values of \displaystyle x \text{ and } y

Answer:

\displaystyle \text{Given } O(0, 0) be the centroid of triangle \displaystyle ABC

Therefore

\displaystyle 0= \frac{5+(-4)+y}{3} \Rightarrow y = -1  

\displaystyle 0 = \frac{x+3+(-2)}{3} \Rightarrow x = -1  

\displaystyle \text{Hence }  x=-1 \text{ and } y = -1