Question 1: Find the area, of the triangle, having:

i) \displaystyle \text{Base  } = 16 \ cm , \displaystyle \text{Height  } = 7.5 \ cm ii) \displaystyle \text{Base  } = 5.6 \ m , \displaystyle \text{Height  } = 3.5 \ m

iii) \displaystyle \text{Base  } = 6 .4 \ m , \displaystyle \text{Height  } = 8 \ dm iv) \displaystyle \text{Base  } = 9.5 \ cm , \displaystyle \text{Height  } = 6 \ mm

Answer:

i) \displaystyle \text{Area of a triangle  } = \frac{1}{2} \times base \times height = \frac{1}{2} \times 16 \times 7.5 = 60 \ cm^2

ii) \displaystyle \text{Area of a triangle  } = \frac{1}{2} \times base \times height = \frac{1}{2} \times 5.6 \times 3.5 = 9.8 \ m^2

iii) \displaystyle \text{Area of a triangle  } = \frac{1}{2} \times base \times height = \frac{1}{2} \times 6.4 \times 0.8 = 2.56 \ m^2

Note: \displaystyle 10 \ dm = 1 m

iv) \displaystyle \text{Area of a triangle  } = \frac{1}{2} \times base \times height = \frac{1}{2} \times 9.5 \times 0.6 = 2.85 \ cm^2

Note: \displaystyle 10 \ mm = 1 cm

\displaystyle \\

Question 2: Find the height of the triangle whose:

i) \displaystyle \text{Area  } = 28.9 \ m^2 , \displaystyle \text{Base  } = 8.5 \ m ii) \displaystyle \text{Area  } = 56 \ dm^2 , \displaystyle \text{Base  } = 2.8 \ m

Answer:

i) \displaystyle \text{Height  } = \frac{2 \times Area}{Base} = \frac{2 \times 28.9}{8.5} = 6.8 \ m

ii) \displaystyle \text{Height  } = \frac{2 \times Area}{Base} = \frac{2 \times 56}{28} = 4 \ dm

\displaystyle \\

Question 3: Find the base of the triangle whose:

i) \displaystyle \text{Area  } = 4.2 \ m^2 , \displaystyle \text{Height  } = 2.4 \ m ii) \displaystyle \text{Area  } = 2.4 \ dm^2 , \displaystyle \text{Height  } = 80 \ cm

Answer:

i) \displaystyle \text{Base  } = \frac{2 \times Area}{Height} = \frac{2 \times 4.2}{2.4} = 3.5 \ m

ii) \displaystyle \text{Base  } = \frac{2 \times Area}{Height} = \frac{2 \times 2.4}{8} = 0.6 \ m

\displaystyle \\

Question 4: Find the area of the triangle whose sides are \displaystyle 13 \ cm, 20 \ cm and \displaystyle 21 \ cm . Also find the altitude of the triangle corresponding to the largest side.

Answer:

\displaystyle a= 13 \ cm, b = 20 \ cm, c = 21 \ cm

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (13+20+21) = 27

Therefore Area of triangle \displaystyle = \sqrt{27(27-13)(27-20)(27-21)} = \sqrt{27 \times 14 \times 7 \times 6} = 126 \ cm^2

\displaystyle \text{Height  } = \frac{2 \times Area}{Base} = \frac{2 \times 126}{21} = 12 \ cm

\displaystyle \\

Question 5: Find the area of the triangle whose sides are \displaystyle 50 \ cm, 48 \ cm and \displaystyle 14 \ cm . Find the height of the triangle corresponding to the side measuring \displaystyle 48 \ cm .

Answer:

\displaystyle a= 50 \ cm, b = 48 \ cm, c = 14 \ cm

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (50+48+14) = 56

Therefore Area of triangle \displaystyle = \sqrt{56(56-50)(56-48)(56-14)} = \sqrt{56 \times 6 \times 8 \times 42} = 336 \ cm^2

\displaystyle \text{Height  } = \frac{2 \times Area}{Base} = \frac{2 \times 336}{48} = 14 \ cm

\displaystyle \\

Question 6: Find the area of a triangular field whose sides are \displaystyle 17 \ m, 19 \ m and \displaystyle 32 \ m . Find the altitude of the triangle corresponding to the smallest side.

Answer:

\displaystyle a= 17 \ m, b = 19 \ m, c = 32 \ m

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (17+19+32) = 34

Therefore Area of triangle \displaystyle = \sqrt{34(34-17)(34-19)(34-32)} = \sqrt{34 \times 17 \times 15 \times 2} = 131.68 \ m^2

\displaystyle \text{Height  } = \frac{2 \times Area}{Base} = \frac{2 \times 131.68}{17} = 15.49 \ cm

\displaystyle \\

Question 7: Find the area of an isosceles triangle in which each of the equal sides measures \displaystyle 30 \ cm and the third side is \displaystyle 48 \ cm long.

Answer:

\displaystyle a= 30 \ cm, b = 30 \ cm, c = 48 \ cm

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (30+30+48) = 54

Therefore Area of triangle \displaystyle = \sqrt{54(54-30)(54-30)(54-48)} = \sqrt{54 \times 24 \times 24 \times 6} = 432 \ cm^2

\displaystyle \\

Question 8: The base and the height of a triangle are in the ratio \displaystyle 5: 3 and its area is \displaystyle 43.2 \ m^2 . Find the base and the height of the triangle.

Answer:

Let the \displaystyle \text{Base  } = 5x and \displaystyle \text{Height  } = 3x

\displaystyle \text{Area of a triangle  } = \frac{1}{2} \times base \times height = \frac{1}{2} \times 5x \times 3x

\displaystyle \Rightarrow 43.2 = 7.5x^2

\displaystyle \Rightarrow x = 2.4

Therefore \displaystyle \text{Base  } = 12 \ m and \displaystyle \text{Height  } = 7.2 \ m

\displaystyle \\

Question 9: Find. the area and the height of an equilateral triangle whose each side measures: (i) \displaystyle 12 \ cm (ii) \displaystyle 10 \ m (iii) \displaystyle 6.4 \ m (Take \displaystyle \sqrt{3} = 1.73 in each case)

Answer:

i) \displaystyle a= 12 \ cm, b = 12 \ cm, c = 12 \ cm

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (12+12+12) = 18

Therefore Area of triangle \displaystyle = \sqrt{18(18-12)(18-12)(18-12)} = \sqrt{18 \times 6 \times 6 \times 6} = 62.28 \ cm^2

\displaystyle \text{Height  } = \frac{2 \times Area}{Base} = \frac{2 \times 62.28}{12} = 10.38 \ cm

ii) \displaystyle a= 10 \ m, b = 10 \ m, c = 10 \ m

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (10+10+10) = 15

Therefore Area of triangle \displaystyle = \sqrt{15(15-10)(15-10)(15-10)} = \sqrt{15 \times 5 \times 5 \times 5} = 43.25 \ m^2

\displaystyle \text{Height  } = \frac{2 \times Area}{Base} = \frac{2 \times 43.25}{10} = 8.65 \ m

iii) \displaystyle a= 6.4 \ m, b = 6.4 \ m, c = 6.4 \ m

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (6.4+6.4+6.4) = 9.6

Therefore Area of triangle \displaystyle = \sqrt{9.6(9.6-6.4)(9.6-6.4)(9.6-6.4)} = \sqrt{9.6 \times 3.2 \times 3.2 \times 3.2} = 17.7152 \ m^2

\displaystyle \text{Height  } = \frac{2 \times Area}{Base} = \frac{2 \times 17.7152}{6.4} = 5.536 \ m

\displaystyle \\

Question 10: Find the area of a right triangle whose hypotenuse is \displaystyle 26 \ cm long and one of the sides containing the right-angle measures \displaystyle 10 \ cm .

Answer:

\displaystyle \text{Height  } = \sqrt{26^2 - 10^2} = \sqrt{576} = 24 \ cm

\displaystyle \text{Area of a triangle  } = \frac{1}{2} \times base \times height = \frac{1}{2} \times 10 \times 24 = 120 \ cm^2

\displaystyle \\

Question 11: The area of a right triangle is \displaystyle 240 \ cm^2 and one of its legs is \displaystyle 16 \ cm long. Find the length of the other leg.

Answer:

Let us say, \displaystyle \text{Height  } = 16 \ cm

\displaystyle \text{Base  } = \frac{2 \times Area}{Height} = \frac{2 \times 240}{16} = 30 \ cm

\displaystyle \\

Question 12: The legs of a right triangle are in the ratio \displaystyle 3 : 4 and its area is \displaystyle 1014 \ cm^2 . Find its hypotenuse.

Answer:

Let the \displaystyle \text{Base  } = 3x and \displaystyle \text{Height  } = 4x

\displaystyle \text{Area of a triangle  } = \frac{1}{2} \times base \times height = \frac{1}{2} \times 3x \times 4x

\displaystyle \Rightarrow 1014 = 6x^2

\displaystyle \Rightarrow x = 13

Therefore Hypotenuse \displaystyle = \sqrt{(39)^2 + (52)^2} = \sqrt{1521+2704} = 65 \ cm

\displaystyle \\

Question 13: The sides of a triangle are in the ratio \displaystyle 13 : 14: 15 and its perimeter is \displaystyle 84 \ cm . Find the area of the triangle.

Answer:

Let the sides be \displaystyle 13x, 14x , and \displaystyle 15x

Therefore \displaystyle 84 = 13x + 14x + 15x

\displaystyle \Rightarrow x = 2

Hence the sides are \displaystyle 26 \ cm, 28 \ cm and \displaystyle 30 \ cm

\displaystyle \\

Question 14: The base of an isosceles triangle is \displaystyle 12 \ cm and its perimeter is \displaystyle 32 \ cm . Find its area.

Answer:

Let the side of the isosceles triangle be \displaystyle x, x, 12

Therefore \displaystyle 32 = 2x+12 \Rightarrow x = 10

\displaystyle a= 10 \ cm, b = 10 \ cm, c = 12 \ cm

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (10+10+12) = 16

Therefore Area of triangle \displaystyle = \sqrt{16(16-10)(16-10)(16-12)} = \sqrt{16 \times 6 \times 6 \times 4} = 48 \ cm^2

\displaystyle \\

Question 15: The cost of painting the top surface of a triangular board at \displaystyle 80 paisa per square meter is \displaystyle Rs.\ 176.40 . If the height of the board measures \displaystyle 24.5 \ m , find its base.

Answer:

Area of the triangular \displaystyle \text{Base  } = \frac{176.40}{0.80} = 220.5 \ m^2

\displaystyle \text{Base  } = \frac{2 \times Area}{Height} = \frac{2 \times 220.5}{24.5} = 18 \ m

\displaystyle \\

Question 16: Calculate the area of the quadrilateral \displaystyle ABCD in which \displaystyle AB = BD = AD = 10 \ cm, \angle BCD = 90^o and \displaystyle CD = 8 \ cm . (Take \displaystyle \sqrt{3} = 1.732 )

Answer:

Area of \displaystyle \triangle ABC = \sqrt{15(15-10)(15-10)(15-10)} = \sqrt{15 \times 5 \times 5 \times 5} = 43.3 \ cm^2

For \displaystyle \triangle BCD

\displaystyle BC = \sqrt{10^2 - 8^2} = \sqrt{36} = 6

Therefore Area of \displaystyle \triangle BCD = \frac{1}{2} \times base \times height = \frac{1}{2} \times 8 \times 6 = 24 \ cm^2

Therefore the area of quadrilateral \displaystyle ABCD = 43.3 + 24 = 67.3 \ cm^2

\displaystyle \\

Question 17: Calculate the area of the quadrilateral \displaystyle PQRS shown in the adjoining figure, it being given that \displaystyle PR = 8 \ cm, RQ =17 \ cm \angle RPQ = 90^o, RS = 6 \ cm and \displaystyle \angle PRS = 90^o

Answer:

In \displaystyle \triangle RPQ

\displaystyle RP = \sqrt{17^2 - 8^2} = \sqrt{289 - 64} = \sqrt {225} = 15 \ cm

Area of \displaystyle \triangle RPQ = \frac{1}{2} \times base \times height = \frac{1}{2} \times 8 \times 15 = 60 \ cm^2

Area of \displaystyle \triangle SRP = \frac{1}{2} \times base \times height = \frac{1}{2} \times 6 \times 15 = 45 \ cm^2

Hence the area of quadrilateral \displaystyle PQRS = 60+45 = 105 \ cm^2

\displaystyle \\

Question 18: Find the area of the quadrilateral \displaystyle ABCD whose diagonal \displaystyle AC is \displaystyle 25 \ cm long and the lengths of the perpendiculars from the opposite vertices \displaystyle B and \displaystyle D on \displaystyle AC are \displaystyle BE = 3.6 \ cm and \displaystyle DF = 2.4 \ cm .

Answer:

Area of \displaystyle \triangle ADC = \frac{1}{2} \times base \times height = \frac{1}{2} \times 25 \times 2.4 = 30 \ cm^2

Area of \displaystyle \triangle ABC = \frac{1}{2} \times base \times height = \frac{1}{2} \times 25 \times 3.6 = 45 \ cm^2

Hence the area of quadrilateral \displaystyle ABCD = 30+45 = 75 \ cm^2

\displaystyle \\

Question 19: Find the area of the quadrilateral \displaystyle ABCD , given in the adjoining figure in which \displaystyle AB = 28 \ cm, BC = 7 8 \ cm, CD = 112 \ cm, BD = 50 \ cm and \displaystyle DA = 30 \ cm

Answer:

For \displaystyle \triangle ABD

\displaystyle a= 30 \ cm, b = 28 \ cm, c = 50 \ cm

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (30+28+50) = 54

Therefore Area of \displaystyle \triangle ABD = \sqrt{54(54-30)(54-28)(54-50)} = \sqrt{54 \times 24 \times 26 \times 4} = 367.13 \ cm^2

For \displaystyle \triangle BCD

\displaystyle a= 50 \ cm, b = 78 \ cm, c = 112 \ cm

Area of triangle \displaystyle = \sqrt{s(s-a)(s-b)(s-c)}

\displaystyle S = \frac{1}{2} (a+b+c) = \frac{1}{2} (50+78+112) = 120

Therefore Area of \displaystyle \triangle ABD = \sqrt{120(120-50)(120-78)(120-112)} = \sqrt{120 \times 70 \times 42 \times 8} = 1680 \ cm^2

Hence the area of quadrilateral \displaystyle ABCD = 367.13+1680 = 2047.13 \ cm^2

\displaystyle \\