Compound Interest without Formula

Question 1: Find the amount and the compound interest on \displaystyle Rs. 3000 , at \displaystyle 5\% per annum for \displaystyle 2 years, compounded annually.

Answer:

\displaystyle \text{For the  } 1^{st} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 3000 \displaystyle \text{ , Rate of Interest }  = 5\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{3000 \times 5 \times 1}{100} = 150 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 1^{st} \text{ year } = 3000 + 150 = 3150 \text{ Rs. }

 \displaystyle \text{For the  } 2^{nd} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 3150 \displaystyle \text{ , Rate of Interest }  = 5\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{3150 \times 5 \times 1}{100} =157.50 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 2^{nd} year \displaystyle = 3150 + 157.50 = 3307.50 \text{ Rs. }

Compound Interest for 2 years = Amount at the end of \displaystyle 2^{nd} Year – Principal \displaystyle = 3307.50 - 3000 = 307.50 \text{ Rs. }

\displaystyle \\

Question 2: Find the amount and the compound interest on \displaystyle Rs. 2000 at \displaystyle 10\% per annum for \displaystyle 2\frac{1}{2} years.

Answer:

\displaystyle \text{For the  } 1^{st} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 2000 \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{2000 \times 10 \times 1}{100} = 200 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 1^{st} \text{ year } = 2000 + 200 = 2200 \text{ Rs. }

 \displaystyle \text{For the  } 2^{nd} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 2200 \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{2200 \times 10 \times 1}{100} =220 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 2^{nd} year \displaystyle = 2200 + 220 = 2420 \text{ Rs. }

For the the next six months: We have,

\displaystyle \text{Principal } = \text{ Rs. } 2420 \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  T = \frac{1}{2} 

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{2420 \times 10 \times \frac{1}{2}}{100} =121 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 2\frac{1}{2} year \displaystyle = 2420 + 121 = 2541 \text{ Rs. }

Compound Interest for \displaystyle 2\frac{1}{2} years = Amount at the end of \displaystyle 2\frac{1}{2} Year – Principal \displaystyle = 2541 - 2000 = 541 \text{ Rs. }

\displaystyle \\

Question 3: Find the compound interest on \displaystyle Rs. 160000 for one year at the rate of \displaystyle 20\% , per annum, if the interest is compounded quarterly.

Answer:

Rate of Interest \displaystyle = \frac{20}{4} \% = 5\% per quarter

For the \displaystyle 1^{st} Quarter : We have,

\displaystyle \text{Principal } = \text{ Rs. } 160000 \displaystyle \text{ , Rate of Interest }  = 5\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{160000 \times 5 \times 1}{100} = 8000 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 1^{st} quarter = 160000 + 8000 = 168000 \text{ Rs. }

For the \displaystyle 2^{nd} Quarter : We have,

\displaystyle \text{Principal } = \text{ Rs. } 168000 \displaystyle \text{ , Rate of Interest }  = 5\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{168000 \times 5 \times 1}{100} = 8400 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 2^{nd} quarter = 168000 + 8400 = 176400 \text{ Rs. }

For the \displaystyle 3^{rd} Quarter : We have,

\displaystyle \text{Principal } = \text{ Rs. } 176400 \displaystyle \text{ , Rate of Interest }  = 5\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{176400 \times 5 \times 1}{100} = 8820 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 3^{rd} quarter = 176400 + 8820 = 185220 \text{ Rs. }

For the \displaystyle 4^{th} Quarter : We have,

\displaystyle \text{Principal } = \text{ Rs. } 185220 \displaystyle \text{ , Rate of Interest }  = 5\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{185220 \times 5 \times 1}{100} = 9261 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 4^{th} quarter = 185220 + 9261 = 194481 \text{ Rs. }

Compound Interest for the year = Amount at the end of \displaystyle 1^{st} Year – Principal \displaystyle = 194481 - 160000 = 34481 \text{ Rs. }

\displaystyle \\

Question 4: Calculate the amount and the compound interest on \displaystyle Rs. 6000 for \displaystyle 2 years when the rates of interest for successive years are \displaystyle 5\% and \displaystyle 6\% respectively.

Answer:

\displaystyle \text{For the  } 1^{st} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 6000 \displaystyle \text{ , Rate of Interest }  = 5\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{6000 \times 5 \times 1}{100} = 300 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 1^{st} \text{ year } = 6000 + 300 = 6300 \text{ Rs. }

 \displaystyle \text{For the  } 2^{nd} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 6300 \displaystyle \text{ , Rate of Interest }  = 6\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{6300 \times 6 \times 1}{100} =378 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 2^{nd} year \displaystyle = 6300 + 378 = 6678 \text{ Rs. }

Compound Interest for 2 years = Amount at the end of \displaystyle 2^{nd} Year – Principal \displaystyle = 6678 - 6000 = 678 \text{ Rs. }

\displaystyle \\

Question 5: The simple interest on a certain sum of money for \displaystyle 2 years at \displaystyle 6\% per annum is \displaystyle Rs. 1680 . Find the amount and the compound interest on the same sum, at the same rate and for the same time, compounded annually.

Answer:

Simple interest on \displaystyle Rs. P for \displaystyle 2 years at \displaystyle 6\% per annum is \displaystyle Rs. 1680

\displaystyle \Rightarrow \frac{P \times R \times T}{100} = 1680

\displaystyle \Rightarrow P = \frac{1680 \times 100}{6 \times 2} = 14000 \text{ Rs. }

Hence the Principal \displaystyle = 14000 \text{ Rs. }

\displaystyle \text{For the  } 1^{st} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 14000 \displaystyle \text{ , Rate of Interest }  = 6\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{14000 \times 6 \times 1}{100} = 840 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 1^{st} \text{ year } = 14000 + 840 = 14840 \text{ Rs. }

 \displaystyle \text{For the  } 2^{nd} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 14840 \displaystyle \text{ , Rate of Interest }  = 6\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{14840 \times 6 \times 1}{100} =890.40 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 2^{nd} year \displaystyle = 14840 + 890.40 = 15730.40 \text{ Rs. }

Compound Interest for 2 years = Amount at the end of \displaystyle 2^{nd} Year – Principal \displaystyle = 15730.40 - 14000 = 1730.40 \text{ Rs. }

\displaystyle \\

Question 6: A man invested \displaystyle Rs. 8000 for \displaystyle 2 years at \displaystyle 10\% per annum, compounded annually. Compute: (i) the amount at the end of first year. (ii) the compound interest for the second year. (iii) the compound interest for \displaystyle 2 years.

Answer:

(i) \displaystyle \text{For the  } 1^{st} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 8000 \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{8000 \times 10 \times 1}{100} = 800 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 1^{st} \text{ year } = 8000 + 800 = 8800 \text{ Rs. }

(ii) \displaystyle \text{For the  } 2^{nd} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 8800 \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{8800 \times 10 \times 1}{100} =880 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 2^{nd} year \displaystyle = 8800 + 880 = 9680 \text{ Rs. }

(iii) Compound Interest for 2 years = Amount at the end of \displaystyle 2^{nd} Year – Principal \displaystyle = 9680 - 8000 = 1680 \text{ Rs. }

\displaystyle \\

Question 7: A person invests \displaystyle Rs. 240000 for \displaystyle 2 years at \displaystyle 10\% per annum compounded annually. If the income tax at \displaystyle 20\% is deducted at the end of each year on interest accrued, find the amount she received at the end of \displaystyle 2 years.

Answer:

\displaystyle \text{For the  } 1^{st} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 240000 \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{240000 \times 10 \times 1}{100} = 24000 \text{ Rs. }

Income tax deducted \displaystyle = \frac{20}{100} \times 24000 = 4800 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 1^{st} \text{ year } = 240000 + 24000 - 4800 = 259200 \text{ Rs. }

 \displaystyle \text{For the  } 2^{nd} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 259200 \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{259200 \times 10 \times 1}{100} =25920 \text{ Rs. }

Income tax deducted \displaystyle = \frac{20}{100} \times 25920 = 5184 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 2^{nd} year \displaystyle = 259200 + 25920 - 5184 = 279936 \text{ Rs. }

\displaystyle \\

Question 8: A man borrows \displaystyle Rs. 15000 at \displaystyle 14\% per annum compounded annually. If he repays \displaystyle Rs. 4100 at the end of first year and \displaystyle Rs. 5220 at the end of second year, find the amount of the loan outstanding at the beginning of the third year.

Answer:

\displaystyle \text{For the  } 1^{st} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 15000 \displaystyle \text{ , Rate of Interest }  = 14\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{15000 \times 14 \times 1}{100} = 2100 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 1^{st} \text{ year } = 15000 + 2100 = 17100 \text{ Rs. }

Amount repaid after \displaystyle 1^{st} Year = 4100 \text{ Rs. }

For the \displaystyle 2^{nd} Year : We have,

\displaystyle \text{Principal } = \text{ Rs. } 17100 - 4100 = 13000 \displaystyle \text{ , Rate of Interest }  = 14\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{13000 \times 14 \times 1}{100} = 1820 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 2^{nd} \text{ year } = 13000 + 1820 = 14820 \text{ Rs. }

Amount repaid after \displaystyle 2^{nd} Year = 5220 \text{ Rs. }

For the \displaystyle 3^{rd} Year : We have,

Outstanding \displaystyle \text{Principal } = \text{ Rs. } 14820 - 5220 = 9600 \text{ Rs. }

\displaystyle \\

Question 9: A person invested \displaystyle Rs. 5000 at a certain rate of interest compounded annually for two years. At the end of first year it amounts to \displaystyle Rs. 5325 . Calculate: (i) The rate of interest (ii) The amount at the end of second year

Answer:

\displaystyle \text{For the  } 1^{st} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 5000 \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest }  = \frac{P \times R \times T}{100} 

\displaystyle \Rightarrow 325 = \frac{5000 \times r \times 1}{100} 

\displaystyle \Rightarrow r = 6.5\%

For the \displaystyle 2^{nd} Year : We have,

\displaystyle \text{Principal } = \text{ Rs. } 5325 \displaystyle \text{ , Rate of Interest }  = 6.5\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{5325 \times 6.5 \times 1}{100} = 346.125 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 2^{nd} \text{ year } = 5325 + 346.125 = 5671.125 \text{ Rs. }

\displaystyle \\

Compound Interest Formula

Question 10: Find the amount and compound interest on \displaystyle Rs. 16000 for \displaystyle 2 years at \displaystyle 15\% , interest being payable annually.

Answer:

\displaystyle \text{Principal } = \text{ Rs. } 16000 \displaystyle \text{ , Rate of Interest }  = 15\% \displaystyle \text{ per annum }  n = 2

\displaystyle A = P \Big( 1+ \frac{R}{100} \Big)^n

\displaystyle = 16000 \Big( 1+ \frac{15}{100} \Big)^2

\displaystyle = 21160 \text{ Rs. }

Therefore compound interest \displaystyle = A - P = 21160 - 16000 = 5160 \text{ Rs. }

\displaystyle \\

Question 11: Find the amount and compound interest on \displaystyle Rs. 25000 for \displaystyle 3 years compounded annually and the rate of interest being \displaystyle 8\%, 10\% and \displaystyle 12\% for three successive years respectively.

Answer:

\displaystyle \text{Principal } = \text{ Rs. } 25000 \displaystyle \text{ , Rate of Interest }  : R_1=8\%, R_2=10\% , R_3=12\% per annum,

\displaystyle A = P \Big(1+ \frac{R_1}{100} \Big).\Big(1+ \frac{R_2}{100} \Big).\Big(1+ \frac{R_3}{100} ) 

\displaystyle = 25000 \Big(1+ \frac{8}{100} \Big).\Big(1+ \frac{10}{100} \Big).\Big(1+ \frac{12}{100}) 

\displaystyle = 25000 \times 1.08 \times 1.10 \times 1.12

\displaystyle = 33264 \text{ Rs. }

Therefore compound interest \displaystyle = A - P = 33264 - 25000 = 8264 \text{ Rs. }

\displaystyle \\

Question 12: Compute the interest earned and amount due if a sum of \displaystyle Rs. 15000 is invested for \displaystyle 1\frac{1}{2} years at \displaystyle 8\% per annum compound interest, interest being compounded semi-annually.

Answer:

\displaystyle \text{Principal } = \text{ Rs. } 15000 \displaystyle \text{ , Rate of Interest }  : R=8\%, \displaystyle \text{ semi-annually,  }  T= 1\frac{1}{2} years

\displaystyle A = P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle = 15000 \Big( 1+ \frac{8}{100 \times 2} \Big)^{1.5 \times 2}

\displaystyle = 15000 \times (1.04)^3 = 16872.96 \text{ Rs. }

Therefore compound interest \displaystyle = A - P = 16872.96 - 15000 = 1872.96 \text{ Rs. }

\displaystyle \\

Question 13: A man borrows \displaystyle Rs. 1000 at \displaystyle 10\% per annum simple interest for \displaystyle 3 years. He immediately lends this money out at compound interest at the same rate and for the same time. What is his gain at the end of \displaystyle 3 years?

Answer:

Simple Interest:

\displaystyle \text{Principal } = \text{ Rs. } 1000 \displaystyle \text{ , Rate of Interest }  : R=10\%, annually, \displaystyle T= 3 years

Interest \displaystyle = \frac{P \times R \times T}{100} = \frac{1000 \times 10 \times 3}{100} = 300 \text{ Rs. }

Compound Interest: 

\displaystyle \text{Principal } = \text{ Rs. } 1000 \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  n = 3

\displaystyle A = P \Big( 1+ \frac{R}{100} \Big)^n

\displaystyle = 1000 \Big( 1+ \frac{10}{100} \Big)^3

\displaystyle = 1331 \text{ Rs. }

Therefore compound interest \displaystyle = A - P = 1331 - 1000 = 331 \text{ Rs. }

Therefore gain \displaystyle = 331 - 300 = 31 \text{ Rs. }

\displaystyle \\

Question 14: What sum of money will amount to \displaystyle Rs. 4374 in \displaystyle 3 years at \displaystyle 12\frac{1}{2}\% per annum, compounded annually?

Answer:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  n = 3 A = 4374 Rs

\displaystyle A = P \Big( 1+ \frac{R}{100} \Big)^n

\displaystyle 4374 = P \Big( 1+ \frac{12.5}{100} \Big)^3

\displaystyle \Rightarrow P = \frac{4734}{1.125^3} = 3072 \text{ Rs. }

\displaystyle \\

Question 15: What sum will become \displaystyle Rs. 9826 in \displaystyle 18 months if the rate of interest is \displaystyle 2\frac{1}{2}\% per is compounded half-yearly?

Answer:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=2\frac{1}{2}\%, \displaystyle \text{ semi-annually,  }  T= 1\frac{1}{2} years \displaystyle A = Rs. 9826

\displaystyle A= P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle 9826 = P \Big( 1+ \frac{2.5}{100 \times 2} \Big)^{1.5 \times 2}

\displaystyle \Rightarrow P = \frac{9826}{1.0125^3} = 9466.54 \text{ Rs. }

\displaystyle \\

Question 16: The difference between the compound interest and the simple interest on a certain sum at \displaystyle 10\% per annum for \displaystyle 3 years is \displaystyle Rs. 93 . Find the sum.

Answer:

Simple Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=10\%, annually, \displaystyle T= 3 years

Interest \displaystyle = \frac{P \times R \times T}{100} = \frac{P \times 10 \times 3}{100} = \frac{3}{10} P Rs. = 0.3P

Compound Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  n = 3

\displaystyle A = P \Big( 1+ \frac{R}{100} \Big)^n

\displaystyle A = P \Big( 1+ \frac{10}{100} \Big)^3

\displaystyle A = 1.331P

Compound Interest \displaystyle = 1.331P-P = 0.331 P

Given \displaystyle 93 = 0.331P - 0.3P

\displaystyle \Rightarrow P = \frac{93}{0.031} = 3000 \text{ Rs. }

\displaystyle \\

Question 17: The difference between the compound interest for a year payable half-yearly and the simple interest on a certain sum of money lent out at \displaystyle 10\% for a year is \displaystyle Rs. 15 . Find the sum of money lent out.

Answer:

Simple Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=10\%, annually, \displaystyle T= 1 years

Interest \displaystyle = \frac{P \times R \times T}{100} = \frac{P \times 10 \times 1}{100} = \frac{1}{10} P Rs. = 0.1P

Compound Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=10\%, \displaystyle \text{ semi-annually,  }  T= 1 year \displaystyle Amount = A

\displaystyle A= P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle A = P \Big( 1+ \frac{10}{100 \times 2} \Big)^{1 \times 2}

\displaystyle A = 1.1025P

Compound Interest \displaystyle = 1.1025P-P = 0.1025 P

Given \displaystyle 15 = 0.1025P - 0.1P

\displaystyle \Rightarrow P = \frac{15}{0.0025} = 6000 \text{ Rs. }

\displaystyle \\

Question 18: On a certain sum, lent out at \displaystyle 20\% per annum for \displaystyle 1\frac{1}{2} , the difference between the compound interest reckoned yearly and the reckoned yearly half- is \displaystyle Rs. 178.75 . Find the sum.

Answer:

Yearly:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=20\%, annually, \displaystyle T= 1\frac{1}{2} year \displaystyle Amount = A

\displaystyle A = P \Big(1+ \frac{R}{100} \Big) \Big(1 + \frac{\frac{R}{2}}{100} \Big)

\displaystyle A = P \Big(1+ \frac{20}{100} \Big) \Big(1 + \frac{10}{100} \Big)

\displaystyle A = 1.20 \times 1.10 P = 1.32 P

Therefore Compound Interest \displaystyle = 1.32P - P = 0.32 P

Half Yearly:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=20\%, \displaystyle \text{ semi-annually,  }  T= 1\frac{1}{2} year \displaystyle Amount = A

\displaystyle A= P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle A = P \Big( 1+ \frac{20}{100 \times 2} \Big)^{1.5 \times 2}

\displaystyle A = 1.331P

Therefore Compound Interest \displaystyle = 1.331P - P = 0.331 P

Given \displaystyle 178.50 = 0.331P - 0.332P = 0.011

\displaystyle \Rightarrow P = \frac{178.75}{0.011} = 16250 \text{ Rs. }

\displaystyle \\

Question 19: The compound interest on a certain sum for \displaystyle 2 years at \displaystyle 12\% per annum is \displaystyle Rs. 795 . Find the simple interest on the same sum for the the same period and at the same rate.

Answer:

Compound Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = 12\% \displaystyle \text{ per annum }  n = 2

\displaystyle A = P \Big( 1+ \frac{R}{100} \Big)^n

\displaystyle A = P \Big( 1+ \frac{12}{100} \Big)^2

\displaystyle A = 1.2544P

Compound Interest \displaystyle 795 = 1.2544P-P = 0.2544 P \Rightarrow P = 3125

Simple Interest:

Principal \displaystyle = 3125 \displaystyle \text{ , Rate of Interest }  : R=12\%, annually, \displaystyle T= 2 years

Interest \displaystyle = \frac{P \times R \times T}{100} = \frac{3125 \times 12 \times 2}{100} = 750 Rs.

\displaystyle \\

Question 20: The simple interest on a certain sum for \displaystyle 2 years at \displaystyle 14\% per annum is \displaystyle Rs. 3500 . Find the corresponding compound interest.

Answer:

Simple Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=14\%, annually, \displaystyle T= 2 years

Interest \displaystyle = \frac{P \times R \times T}{100} 

\displaystyle 3500 = \frac{P \times 14 \times 2}{100} \Rightarrow P = 12500 Rs.

Compound Interest:

Principal \displaystyle = 12500 \displaystyle \text{ , Rate of Interest }  = 14\% \displaystyle \text{ per annum }  n = 2

\displaystyle A = P \Big( 1+ \frac{R}{100} \Big)^n

\displaystyle A = 12500 \Big( 1+ \frac{14}{100} \Big)^2

\displaystyle A = 16245

Compound Interest \displaystyle = 16245 - 12500 = 3745 Rs.

\displaystyle \\

Question 21: The simple interest on a sum of money for \displaystyle 2 years at \displaystyle 8\% per annum is \displaystyle Rs. 900 . Find the compound interest on the sum at the same rate for one year, compounded half -yearly.

Answer:

Simple Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=8\%, annually, \displaystyle T= 2 years

Interest \displaystyle = \frac{P \times R \times T}{100} 

\displaystyle 900 = \frac{P \times 8 \times 2}{100} \Rightarrow P = 5625 Rs.

Compound Interest:

Principal \displaystyle = 5625 \displaystyle \text{ , Rate of Interest }  : R=8\%, \displaystyle \text{ semi-annually,  }  T= 1 year \displaystyle Amount = A

\displaystyle A= P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle A = 5625 \Big( 1+ \frac{8}{100 \times 2} \Big)^{1 \times 2}

\displaystyle A = 6084 \text{ Rs. }

Compound Interest \displaystyle = 6084 - 5625 = 459 Rs.

\displaystyle \\

Question 22: A sum of money is lent out at compound interest for \displaystyle 2 years years at \displaystyle 20\% per annum interest being reckoned yearly. If the same sum of money is lent out at compound interest at the same rate per per annum, compound interest being reckoned half-yearly it will fetch \displaystyle Rs. 482 more by way of interest. Calculate the sum of money-lent out.

Answer:

Compound Interest (yearly):

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = 20\% \displaystyle \text{ per annum }  n = 2

\displaystyle A = P \Big( 1+ \frac{R}{100} \Big)^n

\displaystyle A = P \Big( 1+ \frac{20}{100} \Big)^2

\displaystyle A = 1.44P

Compound Interest \displaystyle = 1.44P - P = 0.44P

Compound Interest (Half yearly):

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=20\%, \displaystyle \text{ semi-annually,  }  T= 2 year \displaystyle Amount = A

\displaystyle A= P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle A = P \Big( 1+ \frac{20}{100 \times 2} \Big)^{2 \times 2}

\displaystyle A = 1.4641

Compound Interest \displaystyle = 1.4641P - P = 0.4641P

Given \displaystyle 482 = 0.4641P - 0.44P \Rightarrow P = 20000 \text{ Rs. }

\displaystyle \\

Question 23: What sum will amount to \displaystyle Rs. 2782.50 in \displaystyle 2 years at compound interest, if the rates are \displaystyle 5\% and \displaystyle 6\% for the successive years?

Answer:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R_1=5\%, R_2 = 6\% \displaystyle \text{ per annum }  Amount = 2782.50 \text{ Rs. }

\displaystyle A = P \Big(1+ \frac{R_1}{100} \Big).\Big(1+ \frac{R_2}{100} \Big)

\displaystyle 2782.50 = P \Big(1+ \frac{5}{100} \Big).\Big(1+ \frac{6}{100} \Big)

\displaystyle \Rightarrow P = \frac{2782.50}{1.05 \times 1.06} = 2500 \text{ Rs. }

\displaystyle \\

Question 24: A certain sum of money lent out at compound interest amounts to \displaystyle Rs. 9200 in one year and to \displaystyle Rs. 12167 in \displaystyle 3 years. Find ii) the rate of interest (ii) the original sum.

Answer:

Compound Interest (yearly):

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  n = 1 Amount = 9200 \text{ Rs. }

\displaystyle 9200 = P \Big( 1+ \frac{r}{100} \Big)^1 … … … … (i)

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  n = 3 Amount = 12167 \text{ Rs. }

\displaystyle 12167 = P \Big( 1+ \frac{r}{100} \Big)^3 … … … … (ii)

Dividing (ii) by (i) we get

\displaystyle \frac{12167}{9200} = \Big( 1+ \frac{r}{100} \Big)^2

\displaystyle \Rightarrow 1.15 = \Big( 1+ \frac{r}{100} \Big)

\displaystyle \Rightarrow r = 1.15 - 1 = 15\%

Now substituting in (i)

\displaystyle P = \frac{9200}{1.15} = 8000 \text{ Rs. }

\displaystyle \\

Question 25: The compound interest, calculated yearly on a certain sum of money for the second year is \displaystyle Rs. 880 and for the third year is \displaystyle Rs. 968 Calculate the rate of interest and the original money.

Answer:

\displaystyle 1^{st} Year

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  n = 1 Amount = A_1

\displaystyle A_1 = P \Big( 1+ \frac{r}{100} \Big)^1 … … … … (i)

\displaystyle 2^{nd} Year

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  n = 1 Amount = A_2

\displaystyle A_2 = P \Big( 1+ \frac{r}{100} \Big)^2 … … … … (ii)

\displaystyle 3^{rd} Year

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  n = 1 Amount = A_3

\displaystyle A_3 = P \Big( 1+ \frac{r}{100} \Big)^3 … … … … (iii)

Given: \displaystyle A_2 - A_1 = 880 and \displaystyle A_3 - A_2 = 968

Therefore

\displaystyle P \Big( 1+ \frac{r}{100} \Big)^2 - P \Big( 1+ \frac{r}{100} \Big)^1 = 880

\displaystyle \Rightarrow P (1+ \frac{r}{100} )( \frac{r}{100} ) = 880 … … … … (iv)

\displaystyle P \Big( 1+ \frac{r}{100} \Big)^3 - P \Big( 1+ \frac{r}{100} \Big)^1 = 968

\displaystyle \Rightarrow P (1+ \frac{r}{100} )^2( \frac{r}{100} ) = 968 … … … … (v)

Dividing (v) by (iv) we get

\displaystyle \frac{968}{880} = 1 + \frac{r}{100} 

\displaystyle \Rightarrow r = 1.1 - 1 = 10\%

Substituting in (iv) \displaystyle P = \frac{880 \times 100}{10 \times 1.1} = 8000 \text{ Rs. }

\displaystyle \\

Question 26: The compound interest on a sum of money for \displaystyle 2 years is \displaystyle Rs. 1050 and the simple interest on the same sum for the same period and at the same rate is \displaystyle Rs. 1000 . Find: (i) the rate of interest (ii) the sum.

Answer:

Compound Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  T = 2 years

\displaystyle A = P \Big( 1+ \frac{r}{100} \Big)^2

Compound Interest \displaystyle 1050 = P \Big( 1+ \frac{r}{100} \Big)^2 - P

\displaystyle \Rightarrow 1050 = P \Big[ (1+ \frac{r}{100})^2 - 1 \Big]

\displaystyle \Rightarrow 1050 = P (2+ \frac{r}{100} )( \frac{r}{100} ) … … … … … (i)

Simple Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=r\%, annually, \displaystyle T= 2 years

Interest \displaystyle = \frac{P \times R \times T}{100} 

\displaystyle 1000 = \frac{P \times r \times 2}{100} \Rightarrow 50000 = Pr

\displaystyle \Rightarrow P = \frac{50000}{r}  … … … … … (ii)

Now solving (i) and (ii) we get

$latex \displaystyle 1050 = \frac{50000}{r} (2+ \frac{r}{100} )( \frac{r}{100} )

\displaystyle \Rightarrow 1050 = 1000 + 5r

\displaystyle \Rightarrow r = 10\%

\displaystyle \Rightarrow P = \frac{50000}{10} = 5000 \text{ Rs. }

\displaystyle \\

Question 27: Find the rate percent per annum if \displaystyle Rs. 2000 amounts to \displaystyle Rs. 2662 in \displaystyle 1\frac{1}{2} years, interest being compounded half-yearly.

Answer:

Principal \displaystyle = 2000 \text{ Rs. } \displaystyle \text{ , Rate of Interest }  : R=r\%, \displaystyle \text{ semi-annually,  }  T= 1.5 years year \displaystyle Amount = 2662 \text{ Rs. }

\displaystyle A= P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle 26620 = 2000 \Big( 1+ \frac{r}{100 \times 2} \Big)^{1.5 \times 2}

\displaystyle 1.331 = \Big( 1+ \frac{r}{100 \times 2} \Big)^{1.5 \times 2}

\displaystyle 1.10 = 1 + \frac{r}{200} \Rightarrow r = 20\% per annum

\displaystyle \\

Question 28: Find the rate at which a sum of money will double itself in \displaystyle 3 years if the interest is compounded annually.

Answer:

Principal \displaystyle = x \text{ Rs. } \displaystyle \text{ , Rate of Interest }  : R=r\%, annually, \displaystyle n= 3 year \displaystyle Amount = 2x \text{ Rs. }

\displaystyle A= P \Big( 1+ \frac{R}{100} \Big)^{n}

\displaystyle 2x = x \Big( 1+ \frac{r}{100 } \Big)^{3}

\displaystyle 2 = \Big( 1+ \frac{r}{100 \times 2} \Big)^3

\displaystyle 1.2599 = 1 + \frac{r}{100} \Rightarrow r = 25.99\% per annum

\displaystyle \\

Question 29: Find the rate at which a sum of money will become four amount times the original in \displaystyle 2 years if the interest is compounded half yearly.

Answer:

Principal \displaystyle = x \text{ Rs. } \displaystyle \text{ , Rate of Interest }  : R=r\%, annually, \displaystyle n= 2 year \displaystyle Amount = 4x \text{ Rs. }

\displaystyle A= P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle 4x = x \Big( 1+ \frac{r}{100 \times 2 } \Big)^{2 \times 2}

\displaystyle 4 = \Big( 1+ \frac{r}{100 \times 2} \Big)^4

\displaystyle 1.4142 = 1 + \frac{r}{200} \Rightarrow r = 82.84\% per annum

\displaystyle \\

Question 30: A sum compounded annually becomes \displaystyle \frac{25}{16}  times of itself in \displaystyle 2 years. Determine the rate of interest.

Answer:

Principal \displaystyle = x \text{ Rs. } \displaystyle \text{ , Rate of Interest }  : R=r\%, annually, \displaystyle n= 2 year \displaystyle Amount = \frac{25}{16}x \text{ Rs. }

\displaystyle A= P \Big( 1+ \frac{R}{100} \Big)^{n}

\displaystyle \frac{25}{16} x = x \Big( 1+ \frac{r}{100} \Big)^{2}

\displaystyle \frac{25}{16} = \Big( 1+ \frac{r}{100 \times 2} \Big)^2

\displaystyle \frac{5}{4} = 1 + \frac{r}{100} \Rightarrow r = 25\% per annum

\displaystyle \\

Question 31: Rishi invested \displaystyle Rs. 30000 in a finance company and received \displaystyle Rs. 39930 after \displaystyle 1\frac{1}{2} years. Find the rate of interest per annum compounded semi-annually.

Answer:

Principal \displaystyle = 30000 \text{ Rs. } \displaystyle \text{ , Rate of Interest }  : R=r\%, \displaystyle \text{ semi-annually,  }  T= 1.5 years year \displaystyle Amount = 39930 \text{ Rs. }

\displaystyle A= P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle 39930 = 30000 \Big( 1+ \frac{r}{100 \times 2} \Big)^{1.5 \times 2}

\displaystyle 1.331 = \Big( 1+ \frac{r}{100 \times 2} \Big)^{1.5 \times 2}

\displaystyle 1.10 = 1 + \frac{r}{200} \Rightarrow r = 20\% per annum

\displaystyle \\

Question 32: In how much time would \displaystyle Rs. 5000 amounts to \displaystyle Rs. 6655 at \displaystyle 10\% per annum compound interest?

Answer:

Principal \displaystyle = 5000 \text{ Rs. } \displaystyle \text{ , Rate of Interest }  : R=10\%, annually, \displaystyle T= n years year \displaystyle Amount = 6655 \text{ Rs. }

\displaystyle A= P \Big( 1+ \frac{R}{100} \Big)^{n}

\displaystyle 6655 = 5000 \Big( 1+ \frac{10}{100} \Big)^{n}

\displaystyle 1.331 = \Big( 1+ \frac{10}{100} \Big)^{n}

\displaystyle 1.1^3 = \Big( 1+ \frac{10}{100} \Big)^{n}

\displaystyle \Rightarrow n = 3 years

\displaystyle \\

Question 33: In what time will \displaystyle Rs. 4400 become \displaystyle Rs. 4576 at \displaystyle 8\% per annum interest compounded half-yearly?

Answer:

Principal \displaystyle = 4400 \text{ Rs. } \displaystyle \text{ , Rate of Interest }  : R=8\%, annually, \displaystyle T= n years year \displaystyle Amount = 4576 \text{ Rs. }

\displaystyle A= P \Big( 1+ \frac{R}{100k} \Big)^{nk}

\displaystyle 4576 = 4400 \Big(1+ \frac{8}{100 \times 2} \Big)^{n \times 2}

\displaystyle 1.04 = \Big( 1+ \frac{4}{100} \Big)^{2n}

\displaystyle 1.04 = ( 1.04)^{2n}

\displaystyle \Rightarrow 2n = 1 year \Rightarrow n = \frac{1}{2} year

\displaystyle \\

Question 34: The compound interest, calculated yearly, on a certain sum of money for the second year is \displaystyle Rs. 1320 and for the third year is \displaystyle Rs. 1452 . Calculate the rate of interest and the original sum of money.

Answer:

\displaystyle 1^{st} Year

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  n = 1 Amount = A_1

\displaystyle A_1 = P \Big( 1+ \frac{r}{100} \Big)^1 … … … … (i)

\displaystyle 2^{nd} Year

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  n = 1 Amount = A_2

\displaystyle A_2 = P \Big( 1+ \frac{r}{100} \Big)^2 … … … … (ii)

\displaystyle 3^{rd} Year

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = r\% \displaystyle \text{ per annum }  n = 1 Amount = A_3

\displaystyle A_3 = P \Big( 1+ \frac{r}{100} \Big)^3 … … … … (iii)

Given: \displaystyle A_2 - A_1 = 1320 and \displaystyle A_3 - A_2 = 1452

Therefore

\displaystyle P \Big( 1+ \frac{r}{100} \Big)^2 - P \Big( 1+ \frac{r}{100} \Big)^1 = 1320

\displaystyle \Rightarrow P (1+ \frac{r}{100} )( \frac{r}{100} ) = 1320 … … … … (iv)

\displaystyle P \Big( 1+ \frac{r}{100} \Big)^3 - P \Big( 1+ \frac{r}{100} \Big)^1 = 1452

\displaystyle \Rightarrow P (1+ \frac{r}{100} )^2( \frac{r}{100} ) = 1452 … … … … (v)

Dividing (v) by (iv) we get

\displaystyle \frac{1452}{1320} = 1 + \frac{r}{100} 

\displaystyle \Rightarrow r = 1.1 - 1 = 10\%

Substituting in (iv) \displaystyle P = \frac{1320 \times 100}{10 \times 1.1} = 12000 \text{ Rs. }

\displaystyle \\

Question 35: On what sum of money will the difference between the compound interest and simple interest for \displaystyle 2 years be equal to \displaystyle Rs. 25 , if the rate of interest charged for both is \displaystyle 5\% per annum?

Answer:

Compound Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  = 5\% \displaystyle \text{ per annum }  T = 2 years

\displaystyle A = P \Big( 1+ \frac{5}{100} \Big)^2

\displaystyle A = P \Big( 1+ \frac{5}{100} \Big)^2 = 1.1025 P

Compound Interest \displaystyle = 1.1025 P - P = 0.1025P

Simple Interest:

Principal \displaystyle = P \displaystyle \text{ , Rate of Interest }  : R=5\%, annually, \displaystyle T= 2 years

Interest \displaystyle = \frac{P \times R \times T}{100} 

\displaystyle = \frac{P \times 5 \times 2}{100} \Rightarrow = 0.1P

Given: \displaystyle 25 = 0.1025 P - 0.1P \Rightarrow P = 10000 \text{ Rs. }

\displaystyle \\

Question 36: Mr Kumar borrowed \displaystyle Rs. 15000 for two years. The rate of interest for the two successive years are \displaystyle 8\% and \displaystyle 10\% respectively. If he repays \displaystyle Rs. 6200 at the end of the first year, find the outstanding amount at the end of second year.

Answer:

\displaystyle \text{For the  } 1^{st} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 15000 \displaystyle \text{ , Rate of Interest }  = 8\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{15000 \times 8 \times 1}{100} = 1200 \text{ Rs. }

\displaystyle \text{Therefore, the Amount at the end of  } 1^{st} \text{ year } =15000 + 1200 = 16200 \text{ Rs. }

\displaystyle \text{For the  } 2^{nd} \text{ Year : We have, }

\displaystyle \text{Principal } = \text{ Rs. } 16200 - 6200 = 10000 \displaystyle \text{ , Rate of Interest }  = 10\% \displaystyle \text{ per annum }  T = 1

\displaystyle \text{Therefore Interest } = \frac{P \times R \times T}{100} = \frac{10000 \times 10 \times 1}{100} =1000 \text{ Rs. }

Therefore, the Amount at the end of \displaystyle 2^{nd} year \displaystyle = 10000 + 1000 = 11000 \text{ Rs. }

\displaystyle \\  

Depreciation Problems

Question 37: The value of a machine depreciates at the rate of \displaystyle 10\% per annum. what will be its value \displaystyle 2 years hence if the present value is \displaystyle Rs. 100000 ? Also, find the total depreciation during this period.

Answer:

Present Value \displaystyle V_0 = 100000 \text{ Rs. } Rate of Depreciation \displaystyle = 10\% No of Years \displaystyle = 2

\displaystyle V_2 = V_0 \Big( 1- \frac{R}{100} \Big)^n

\displaystyle V_2 = 100000 \Big( 1- \frac{10}{100} \Big)^2

\displaystyle V_2= 81000 \text{ Rs. }

Total depreciation \displaystyle = 100000 - 81000 = 19000 \text{ Rs. }

\displaystyle \\

Question 38: Pritam bought a plot of land for \displaystyle Rs. 640000 . Its value is increasing by \displaystyle 5\% of its previous value after every six months. What will be the value of the plot after \displaystyle 2 years?

Answer:

Present Value \displaystyle = 640000 \text{ Rs. } \displaystyle \text{ , Rate of Interest }  = 5\% half yearly , \displaystyle T = 2 years

\displaystyle V_2 = P \Big( 1+ \frac{r}{100k} \Big)^{nk}

\displaystyle V_2 = 640000 \Big( 1+ \frac{10}{100 \times 2} \Big)^{2 \times 2}

\displaystyle V_2 = 777924 \text{ Rs. }

\displaystyle \\

Question 39: The value of a machine depreciates at the rate of \displaystyle 10\% per annum. It was purchased \displaystyle 3 years ago. If its present value is \displaystyle Rs. 43740 , find its purchase price.

Answer:

Present Value \displaystyle V_0 = 43740 \text{ Rs. } Rate of Depreciation \displaystyle = 10\% No of Years \displaystyle = 3 Value 3 years back \displaystyle V_{-3} = x

\displaystyle V_0 = V_{-3} \Big( 1- \frac{R}{100} \Big)^3

\displaystyle 43740 = V_{-3} \Big( 1- \frac{10}{100} \Big)^3

\displaystyle V_{-3} = 60000 \text{ Rs. }

Total depreciation \displaystyle = 60000 - 43740 = 16260 \text{ Rs. }

\displaystyle \\

Question 40: The cost of a T.V. set was quoted \displaystyle Rs. 17000 at the beginning of 1999. In the beginning of 2000 the price was hiked by \displaystyle 5\% . Because of decrease in demand the cost was reduced by \displaystyle 4\% in the beginning of 2001. What was the cost of the T.V. set in 2001?

Answer:

Cost of TV at the beginning of 1999 \displaystyle = 17000 \text{ Rs. }

Cost of TV at the beginning of 2000 \displaystyle = 17000 \times 1.05 = 17850 \text{ Rs. }

Cost of TV at the beginning of 2001 \displaystyle = 17850 \times 0.96 = 17136 \text{ Rs. }

\displaystyle \\

Question 41: Ashish staffed the business with an initial investment of \displaystyle Rs. 500000 . In the first he incurred a loss of \displaystyle 4\% . However, during the second year he earned a profit of \displaystyle 5\% which in third year rose to \displaystyle 10\% . Calculate the net profit for the entire period of \displaystyle 3 years.

Answer:

Initial Investment at the beginning of 1st Year \displaystyle = 500000 \text{ Rs. }

Capital at the beginning of 2nd Year \displaystyle = 500000 \times 0.96 = 480000 \text{ Rs. }

Capital at the beginning of 3rd Year \displaystyle = 480000 \times 1.05 = 504000 \text{ Rs. }

Capital at the beginning of 4th Year \displaystyle = 504000 \times 1.10 = 554400 \text{ Rs. }

Net profit \displaystyle = 554400 - 500000 = 54400 \text{ Rs. }

\displaystyle \\

Population Questions

Question 42: The present population of a town is \displaystyle 28000 . If it increases at the rate of \displaystyle 5\% per annum, what will be its \displaystyle \text{Population after } 2 years?

Answer:

Population \displaystyle P = 28000 , Rate \displaystyle R = 5\% \displaystyle \text{ per annum }  n = 2 years

\displaystyle \text{Population after } n years \displaystyle = P \Big(1+ \frac{R}{100} \Big)^{n}

\displaystyle \text{Population after } 2 years \displaystyle = 28000 \Big(1+ \frac{5}{100} \Big)^{2} = 30870

\displaystyle \\

Question 43: The present population of a town is \displaystyle 25000 . It grows at first \displaystyle 4\%, 5\% and \displaystyle 8\% during year, second year and third year respectively. Find lts \displaystyle \text{Population after } 3 years.

Answer:

Current Population \displaystyle P = 25000 , Rate \displaystyle R_1 = 4\%, R_2=5%, R_3 = 8\% \displaystyle \text{ per annum }  n = 3 years

\displaystyle \text{Population after } 3^{rd} Year = P \Big(1+ \frac{R_1}{100} \Big).\Big(1+ \frac{R_2}{100} \Big).\Big(1+ \frac{R_3}{100} \Big)

\displaystyle \text{Population after } 3^{rd} Year = 25000 \Big(1+ \frac{4}{100} \Big).\Big(1+ \frac{5}{100} \Big).\Big(1+ \frac{8}{100} \Big)

\displaystyle = 25000 \times 1.04 \times 1.05 \times 1.08 = 29484

\displaystyle \\

Question 44: There is a continuous growth in population of a village at the rate of \displaystyle 5\% per annum. If its present population is \displaystyle 9261 , what was it \displaystyle 3 years ago?

Answer:

Population 3 years ago \displaystyle = P_{-3} Current Population \displaystyle P_0 = 9261 , Rate \displaystyle R = 5\% \displaystyle \text{ per annum }  n = 3 years

Therefore \displaystyle P_{0} = P_{-3} \Big(1+ \frac{R}{100} \Big)^{n}

\displaystyle 9261 =P_{-3} \Big(1+ \frac{5}{100} \Big)^{3}

\displaystyle \Rightarrow P_{-3} = 8000

\displaystyle \\

Question 45: In a factory the production of scooters rose to \displaystyle 46305 from \displaystyle 40000 in \displaystyle 3 years. Find the annual rate of growth of the production of scooters.

Answer:

\displaystyle P = 40000 A = 46305 n = 3 years, Rate = R\%

\displaystyle 46305 = 40000 \Big(1+ \frac{R}{100} \Big)^{3}

\displaystyle 1.05 = 1 + \frac{R}{100} 

\displaystyle \Rightarrow R = 5\%

\displaystyle \\

Question 46: The population of a town increases at the rate of \displaystyle 50 per thousand. Its \displaystyle \text{Population after } 2 years will be \displaystyle 22050 . Find its present population.

Answer:

Rate of Increase \displaystyle = 5% A (population in 2 years) \displaystyle = 22050, P (Initial population) \displaystyle = P

\displaystyle 22050 = P \Big(1+ \frac{5}{100} \Big)^{2}

\displaystyle \Rightarrow P = 20000

\displaystyle \\

Question 47: The count of bacteria in a culture grows by \displaystyle 10\% in the first hour, decreases by \displaystyle 8\% in the second hour and again increase by \displaystyle 12\% in third hour. If the count of bacteria in the sample \displaystyle 13125000 , what will be the count of bacteria after \displaystyle 3 hour.

Answer:

Current bacteria Population \displaystyle P = 13125000 , Rate \displaystyle R_1 = 10\%, R_2=-8%, R_3 = 12\% \displaystyle \text{ per annum }  n = 3 hours

\displaystyle \text{ Bacteria Population after } 3^{rd} hours = P \Big(1+ \frac{R_1}{100} \Big).\Big(1+ \frac{R_2}{100} \Big).\Big(1+ \frac{R_3}{100} \Big)

\displaystyle \text{ Bacteria Population after } 3^{rd} hours = 13125000 \Big(1+ \frac{10}{100} \Big).\Big(1+ \frac{-8}{100} \Big).\Big(1+ \frac{12}{100} \Big)

\displaystyle = 13125000 \times 1.10 \times 0.92 \times 1.12 = 14876400

\displaystyle \\

Question 48: \displaystyle 6400 workers were employed to construct a river bridge in four years. At the end First year, \displaystyle 25\% workers were retrenched. At the second year \displaystyle 25\% of those working at that time were retrenched. However, to complete the project in time, the number of workers was increased by \displaystyle 25\% the end of the third year. How many workers were working during the fourth year?

Answer:

Current worker Population \displaystyle P = 6400 , Rate \displaystyle R_1 = -25\%, R_2=-25%, R_3 = 25\% \displaystyle \text{ per annum }  n = 3 years

\displaystyle \text{Worker Population after } 3^{rd} years = P \Big(1+ \frac{R_1}{100} \Big).\Big(1+ \frac{R_2}{100} \Big).\Big(1+ \frac{R_3}{100} \Big)

\displaystyle \text{Worker Population after } 3^{rd} years = 6400 \Big(1+ \frac{-25}{100} \Big).\Big(1+ \frac{-25}{100} \Big).\Big(1+ \frac{25}{100} \Big)

\displaystyle = 64000 \times 0.75 \times 0.75 \times 1.25 = 4500

\displaystyle \\

Question 49: A man started a factory with an initial investment of \displaystyle Rs. 100000 . In the first year, he incurred a loss of \displaystyle 5\% . However, during the second year; he earned a profit of \displaystyle 10\% which in the third year rose to \displaystyle 12\% . Calculate the profit for the entire period of three years.

Answer:

Initial Investment \displaystyle P = 100000 , Rate \displaystyle R_1 = -5\%, R_2=10%, R_3 = 12\% \displaystyle \text{ per annum }  n = 3 years

\displaystyle \text{ Worker Population after } 3^{rd} years = P \Big(1+ \frac{R_1}{100} \Big).\Big(1+ \frac{R_2}{100} \Big).\Big(1+ \frac{R_3}{100} \Big)

\displaystyle \text{ Worker Population after } 3^{rd} years = 100000 \Big(1+ \frac{-5}{100} \Big).\Big(1+ \frac{10}{100} \Big).\Big(1+ \frac{12}{100} \Big)

\displaystyle = 100000 \times 0.95 \times 1.10 \times 1.12 = 117040 \text{ Rs. }

Therefore net profit \displaystyle = 117040 - 100000 = 17040 \text{ Rs. }

\displaystyle \\

Question 50: The population of a city increases each year by \displaystyle 4\% of what it had been at the beginning of each year. If the population in 1999 had been \displaystyle 6760000 , find the population of the city in (i) 2001 (ii) 1997.

Answer:

\displaystyle P (1999) = 6760000 , Rate = 4\%

\displaystyle P_{2001} = 6760000 \Big(1+ \frac{4}{100} \Big)^{2} = 7311616

\displaystyle 6760000= P_{1997} \Big(1+ \frac{4}{100} \Big)^{2}

\displaystyle \Rightarrow P_{1997} = 6250000