Question 1: Three angles of a quadrilateral are respectively equal to its fourth \displaystyle 110^o , \displaystyle 50^o \text{ and } 40^o . Find angle.

Answer:

\displaystyle \text{Number of sides } (n) = 4

Given angles: \displaystyle \text{Given angles: } 110^o, 50^o \text{ and } 40^o

The sum of the interior angles of a quadrilateral \displaystyle = (2n-4) \times 90^o = (8-4) \times 90^o = 360^o

Therefore the 4th angle \displaystyle = 360^o - 110^o - 50^o - 40^o = 160^o

\displaystyle \\

Question 2: In a quadrilateral \displaystyle ABCD , the angles \displaystyle A , B, C \text{ and } D are in the ratio \displaystyle 1 : 2 :4 :5 . Find the measure of each angle of the quadrilateral.

Answer:

\displaystyle \text{Given: } \angle A : \angle B: \angle C : \angle D = 1:2:4:5

\displaystyle \text{Number of sides } (n) = 4

The sum of the interior angles of a quadrilateral \displaystyle = (2n-4) \times 90^o = (8-4) \times 90^o = 360^o

\displaystyle \text{Therefore } x + 2x + 4x + 5x = 360^o

\displaystyle \Rightarrow 12x = 360^o \Rightarrow x = 30^o

Hence the angles are: \displaystyle \angle A = 30^o, \angle B = 60^o, \angle C = 120^o \text{ and } \angle D = 150^o

\displaystyle \\

Question 3: ln a quadrilateral \displaystyle ABCD, CO and. \displaystyle DO are the bisectors of \displaystyle \angle C \text{ and } \angle D respectively. Prove that \displaystyle \angle COD = \frac{1}{2} (\angle A + \angle B)

Answer:

\displaystyle \text{To prove: } \angle COD = \frac{1}{2} (\angle A + \angle B)

\displaystyle \angle COD + \frac{1}{2} \angle C + \frac{1}{2} \angle D = 180^o

\displaystyle \Rightarrow \angle COD = 180^o - \frac{1}{2} (\angle C + \angle D) … … … … … i)

\displaystyle \angle C + \angle A = 180^o \Rightarrow \angle C = 180^o - \angle A

\displaystyle \angle D + \angle B = 180^o \Rightarrow \angle D = 180^o - \angle B

Substituting in i)

\displaystyle \angle COD = 180^o - \frac{1}{2} (180^o - \angle A + 180 - \angle B)

\displaystyle \Rightarrow \angle COD = 180^o - 90^o - 90^o + \frac{1}{2} (\angle A + \angle B)

\displaystyle \Rightarrow \angle COD = \frac{1}{2} (\angle A + \angle B)

\displaystyle \\

Question 4: Prove that the sum of all the interior angles of a pentagon is \displaystyle 540^o .

Answer:

The pentagon \displaystyle ABCDE comprises of three triangles \displaystyle \triangle ABC, \triangle BEC \text{ and } \triangle CED (please refer to the adjoining diagram)

Sum of the internal angles of \displaystyle ABCDE = \angle A + \angle B + \angle C + \angle D + \angle E

\displaystyle = \angle A + \angle ABE + \angle EBC + \angle BCE + \angle ECD + \angle D + \angle AEB + \angle BEC + \angle CED

\displaystyle = (\angle A + \angle ABE + \angle AEB) + (\angle EBC + \angle BCE + \angle BEC) + (\angle ECD + \angle CED + \angle D)

\displaystyle = 180^o + 180^o + 180^o = 540^o

\displaystyle \\

Question 5: What is the measure of each angle of a regular octagon?

Answer:

\displaystyle \text{Regular Octagon: } (n) = 8

\displaystyle \text{Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle = \Big( \frac{2\times 8-4}{8} \Big) \times 90^o

\displaystyle = \frac{12}{8} \times 90^o = 135^0

\displaystyle \text{Exterior Angle } = 180^o - 135^o = 45^o

\displaystyle \\

Question 6: Find the number of sides of a regular polygon, when each of its angles has a measure of i) \displaystyle 160^o ii) \displaystyle 135^o iii) \displaystyle 175^o iv) \displaystyle 162^o v) \displaystyle 150^o

Answer:

i) \displaystyle \text{Let the Number of sides } = n

\displaystyle \text{We know Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle \text{Given Interior Angle } = 160^o

\displaystyle \text{Therefore } \Big( \frac{2n-4}{n} \Big) \times 90^o = 160^o

\displaystyle \Rightarrow 18n - 36 = 16n

\displaystyle \Rightarrow 2n = 36 \Rightarrow 18

ii) \displaystyle \text{Let the Number of sides } = n

\displaystyle \text{We know Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle \text{Given Interior Angle } = 135^o

\displaystyle \text{Therefore } \Big( \frac{2n-4}{n} \Big) \times 90^o = 135^o

\displaystyle \Rightarrow \Big( \frac{2n-4}{n} \Big) \times 2 = 3

\displaystyle \Rightarrow 4n - 8 = 3n

\displaystyle \Rightarrow n = 8

iii) \displaystyle \text{Let the Number of sides } = n

\displaystyle \text{We know Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle \text{Given Interior Angle } = 175^o

\displaystyle \text{Therefore } \Big( \frac{2n-4}{n} \Big) \times 90^o = 175^o

\displaystyle \Rightarrow \Big( \frac{2n-4}{n} \Big) \times 18 = 35

\displaystyle \Rightarrow 36n - 72 = 35n

\displaystyle \Rightarrow n = 72

iv) \displaystyle \text{Let the Number of sides } = n

\displaystyle \text{We know Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle \text{Given Interior Angle } = 162^o

\displaystyle \text{Therefore } \Big( \frac{2n-4}{n} \Big) \times 90^o = 162^o

\displaystyle \Rightarrow \Big( \frac{2n-4}{n} \Big) \times 5 = 9

\displaystyle \Rightarrow 10n - 20 = 9n

\displaystyle \Rightarrow n = 20

v) \displaystyle \text{Let the Number of sides } = n

\displaystyle \text{We know Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle \text{Given Interior Angle } = 150^o

\displaystyle \text{Therefore } \Big( \frac{2n-4}{n} \Big) \times 90^o = 150^o

\displaystyle \Rightarrow \Big( \frac{2n-4}{n} \Big) \times 3 = 5

\displaystyle \Rightarrow 6n - 12 = 5n

\displaystyle \Rightarrow n = 12

\displaystyle \\

Question 7: Find the number of sides of a polygon the sum of whose interior angles is i) \displaystyle 1440^o ii) \displaystyle 28 right angles iii) \displaystyle 19 straight angles

Answer:

i) Sum of all interior angles of a polygon \displaystyle = (2n-4) \times 90^o

\displaystyle \text{Therefore } 1440^o = (2n-4) \times 90^o

\displaystyle \Rightarrow 1440 = (2n-4) \times 9

\displaystyle \Rightarrow 144 = 18n - 36

\displaystyle \Rightarrow 18n = 180

\displaystyle \Rightarrow n = 10

ii) Sum of all interior angles of a polygon \displaystyle = (2n-4) \times 90^o

\displaystyle \text{Therefore } 28 \times 90^o = (2n-4) \times 90^o

\displaystyle \Rightarrow 28 = 2n-4

\displaystyle \Rightarrow 2n = 32

\displaystyle \Rightarrow n = 16

iii) Sum of all interior angles of a polygon \displaystyle = (2n-4) \times 90^o

\displaystyle \text{Therefore } 19 \times 180^o = (2n-4) \times 90^o

\displaystyle \Rightarrow 19 \times 2 = 2n-4

\displaystyle \Rightarrow 38 = 2n - 4

\displaystyle \Rightarrow 2n = 42

\displaystyle \Rightarrow n = 21

\displaystyle \Rightarrow n = 10

\displaystyle \\

Question 8: Find the number of degrees in each exterior angle of regular pentagon.

Answer:

\displaystyle \text{Regular pentagon: } n = 5

Exterior angle of a regular polygon of \displaystyle n sides \displaystyle = \frac{360^o}{n}  

Therefore exterior angle of pentagon \displaystyle = \frac{360^o}{5} = 72^o

\displaystyle \\

Question 9: The measure of angles of hexagon are \displaystyle x^o, (x-5)^o, (x-5)^o, (2x-5)^o, (2x-5)^o, (2x+20)^o . Find the value of \displaystyle x .

Answer:

\displaystyle \text{Regular hexagon: } n = 6

\displaystyle \text{Sum of interior angles } = (2n - 4) \times 90^o

\displaystyle = (12 - 4) \times 90^o

\displaystyle = 720^0

\displaystyle \text{Therefore } x^o + (x-5)^o + (x-5)^o + (2x-5)^o + (2x-5)^o + (2x+20)^o = 720^o

\displaystyle \Rightarrow 9x = 720^o

\displaystyle \Rightarrow x = 80^o

\displaystyle \text{Hence the Exterior Angle } = 180^o - 80^o = 100^o

\displaystyle \\

Question 10: In a convex hexagon, prove that the sum of all interior angles is equal to twice the sum of exterior angles formed by producing the sides in the same order.

Answer:

Convex hexagon: \displaystyle n = 6

\displaystyle \text{Sum of interior angles } = (2n - 4) \times 90^o

\displaystyle = (12 - 4) \times 90^o

\displaystyle = 720^0

\displaystyle \text{Sum of exterior angles of a hexagon } = \Big( \frac{360^o}{n} \Big) \times n = 360^o

Hence Sum of all interior angles \displaystyle = 2 \times sum of all exterior angles

\displaystyle \\

Question 11: The sum of the interior angles of a polygon is three times the sum of its exterior angles. Determine the number of sides of the polygon.

Answer:

Given: Sum of all interior angles \displaystyle = 3 \times sum of all exterior angles

\displaystyle \text{Therefore } (2n-4) \times 90^o = 3 \times \Big( \frac{360^o}{n} \Big) \times n

\displaystyle \Rightarrow 2n-4 = 12

\displaystyle \Rightarrow n = 8

\displaystyle \\

Question 12: Determine the number of sides of a polygon whose exterior and interior angles are in the ratio of \displaystyle 1:5 .

Answer:

\displaystyle \text{Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle \text{Exterior Angle } = \frac{360^o}{n}  

\displaystyle \text{Given: } \Big( \frac{2n-4}{n} \Big) \times 90^o = 5 \times \frac{360^o}{n}  

\displaystyle \Rightarrow 2n - 4 = 20

\displaystyle \Rightarrow 2n = 24

\displaystyle \Rightarrow n = 12

\displaystyle \\

Question 13: \displaystyle PQRSIU is a regular hexagon. Determine each angle of \displaystyle \triangle PQT

Answer:

\displaystyle \text{Regular hexagon: } n = 6

\displaystyle \text{Therefore Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle = \Big( \frac{2 \times 6-4}{6} \Big) \times 90^o

\displaystyle = \frac{8}{6} \times 90^o = 120^o

Since \displaystyle TU = UP

\displaystyle \angle UTP = \angle UPT = 30^o

In a quadrilateral sum of opposite angles \displaystyle = 180^o

\displaystyle \text{Therefore } 120^o + \angle TQP = 180^o

\displaystyle \Rightarrow \angle TQP = 60^o

\displaystyle \angle UPQ = 120^o

\displaystyle \Rightarrow 30 + \angle TPQ = 120^o

\displaystyle \Rightarrow \angle TPQ = 90^o

\displaystyle \text{Therefore } \angle PTQ = 180^o - 90^o - 60^o = 30^o

\displaystyle \\

Question 14: Is it possible to construct a regular polygon the measure of whose each interior angle is i) \displaystyle 120^o ii) \displaystyle 110^o and iii) \displaystyle 150^o

Answer:

i) Given: \displaystyle \text{Interior Angle } = 120^o

\displaystyle \text{Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle \text{Therefore } \Big( \frac{2n-4}{n} \Big) \times 90^o = 120^o

\displaystyle \Rightarrow 6n - 12 = 4n

\displaystyle \Rightarrow 2n = 12

\displaystyle \Rightarrow n = 6

Therefore it is possible to construct a regular polygon with an interior angle of \displaystyle 120^o

ii) Given: \displaystyle \text{Interior Angle } = 110^o

\displaystyle \text{Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle \text{Therefore } \Big( \frac{2n-4}{n} \Big) \times 90^o = 110^o

\displaystyle \Rightarrow 18n - 36 = 11n

\displaystyle \Rightarrow 7n = 36

\displaystyle \Rightarrow n = 5.142

Therefore it is not possible to construct a regular polygon with an interior angle of \displaystyle 110^o since \displaystyle n should be a positive integer.

iii) Given: \displaystyle \text{Interior Angle } = 150^o

\displaystyle \text{Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle \text{Therefore } \Big( \frac{2n-4}{n} \Big) \times 90^o = 150^o

\displaystyle \Rightarrow 6n - 12 = 5n

\displaystyle \Rightarrow n = 12

Therefore it is possible to construct a regular polygon with an interior angle of \displaystyle 120^o

\displaystyle \\

Question 15: Is it possible to construct a regular polygon the measure of whose each exterior angle is i) \displaystyle 24^o ii) \displaystyle 50^o iii) \displaystyle 70^o

Answer:

i) \displaystyle \text{Exterior Angle } = 24^o

We know \displaystyle \text{Exterior Angle } = \frac{360^o}{n}  

\displaystyle \text{Therefore } \frac{360^o}{n} = 24^o

\displaystyle \Rightarrow n = \frac{360^o}{24^o} = 15

Therefore it is possible to construct a regular polygon with an exterior angle of \displaystyle 24^o

ii) \displaystyle \text{Exterior Angle } = 50^o

We know \displaystyle \text{Exterior Angle } = \frac{360^o}{n}  

\displaystyle \text{Therefore } \frac{360^o}{n} = 50^o

\displaystyle \Rightarrow n = \frac{360^o}{50^o} = 7.2

Therefore it is not possible to construct a regular polygon with an exterior angle of \displaystyle 50^o

iii) \displaystyle \text{Exterior Angle } = 70^o

We know \displaystyle \text{Exterior Angle } = \frac{360^o}{n}  

\displaystyle \text{Therefore } \frac{360^o}{n} = 70^o

\displaystyle \Rightarrow n = \frac{360^o}{70^o} = 5.15

Therefore it is not possible to construct a regular polygon with an exterior angle of \displaystyle 70^o

\displaystyle \\

Question 16: Can a regular polygon be described the sum of whose interior angles is i) \displaystyle 520^o ii) \displaystyle 1260^o iii) \displaystyle 9 right angles

Answer:

i) \displaystyle \text{Sum of interior angles } = 520^o

We know that sum of interior angles of a polygon \displaystyle = (2n-4) \times 90^o

\displaystyle \text{Therefore } (2n-4) \times 90^o = 520^o

\displaystyle \Rightarrow 18n - 36 = 52

\displaystyle \Rightarrow 18n = 88

\displaystyle \Rightarrow n = 4.69

Hence it is not possible to construct a polygon where the sum of interior angles is \displaystyle 520^o

ii) \displaystyle \text{Sum of interior angles } = 1260^o

We know that sum of interior angles of a polygon \displaystyle = (2n-4) \times 90^o

\displaystyle \text{Therefore } (2n-4) \times 90^o = 1260^o

\displaystyle \Rightarrow 2n - 4 = 14

\displaystyle \Rightarrow 2n = 18

\displaystyle \Rightarrow n = 9

Hence it is possible to construct a polygon where the sum of interior angles is \displaystyle 1260^o

iii) \displaystyle \text{Sum of interior angles } = 9 \times 90^o = 810^o

We know that sum of interior angles of a polygon \displaystyle = (2n-4) \times 90^o

\displaystyle \text{Therefore } (2n-4) \times 90^o = 810^o

\displaystyle \Rightarrow 2n - 4 = 9

\displaystyle \Rightarrow 2n = 13

\displaystyle \Rightarrow n = 6.5

Hence it is not possible to construct a polygon where the sum of interior angles is \displaystyle 810^o

\displaystyle \\

Question 17: Determine the number of sides of regular, polygon the measure of whose each interior angle is double that of the exterior angle

Answer:

Given: \displaystyle \text{Interior Angle } = 2 \times Exterior angle

\displaystyle \Rightarrow \Big( \frac{2n-4}{n} \Big) \times 90^o = 2 \times \Big( \frac{360^o}{n} \Big)

\displaystyle \Rightarrow 2n-4 = 8

\displaystyle \Rightarrow 2n = 12

\displaystyle \Rightarrow n = 6

\displaystyle \\

Question 18: Find the number of sides of a regular polygon if it is given that the ratio of an interior angle and an exterior angle is \displaystyle 8:1 .

Answer:

Given: \displaystyle \text{Interior Angle } = 8 \times Exterior angle

\displaystyle \Rightarrow \Big( \frac{2n-4}{n} \Big) \times 90^o = 8 \times \Big( \frac{360^o}{n} \Big)

\displaystyle \Rightarrow 2n-4 = 32

\displaystyle \Rightarrow 2n = 36

\displaystyle \Rightarrow n = 18

\displaystyle \\

Question 19: The measure of each interior angle of a regular polygon is \displaystyle 144^o . Determine the interior angle of another regular polygon the number of whose sides is twice of the first polygon.

Answer:

Let the number of sides of the first polygon \displaystyle = n

\displaystyle \text{Therefore } \Big( \frac{2n-4}{n} \Big) \times 90^o = 144^o

\displaystyle \Rightarrow 20n - 40 = 16n

\displaystyle \Rightarrow 4n = 40

\displaystyle \Rightarrow n = 10

For the second polygon: \displaystyle n = 20

Therefore Internal angle = \displaystyle \Big( \frac{2n-4}{n} \Big) \times 90^o

\displaystyle = \Big( \frac{2 \times 20-4}{20} \Big) \times 90^o

\displaystyle = \frac{36}{20} \times 90^o

\displaystyle = 162^o

\displaystyle \\

Question 20: Find the number of sides of the regular polygon if it is given that an interior angle and an exterior angle are in the ratio of \displaystyle 7:2 .

Answer:

\displaystyle \text{Given: } 2 \times \displaystyle \text{Interior Angle } = 7 \times Exterior angle

\displaystyle \Rightarrow 2 \times \Big( \frac{2n-4}{n} \Big) \times 90^o = 7 \times \Big( \frac{360^o}{n} \Big)

\displaystyle \Rightarrow 4n-8 = 28

\displaystyle \Rightarrow 4n = 36

\displaystyle \Rightarrow n = 9

\displaystyle \\

Question 21: Show that the diagonals of a regular pentagon are equal.

Answer:

\displaystyle \text{To prove: } AC = AD

Consider \displaystyle \triangle ABC \text{ and } \triangle ADE

Since \displaystyle ABCDE is a regular pentagon,

\displaystyle AB = AE (given)

\displaystyle BC = DE (given)

and \displaystyle \angle ABC = \angle AED (given)

\displaystyle \text{Therefore } \triangle ABC \cong \triangle ADE (by S.A.S criterion)

\displaystyle \text{Therefore } AC = AD (corresponding sides of congruent triangles are equal)

Hence the diagonals are equal from any vertex.

\displaystyle \\

Question 22: The number of sides of two regular polygons are in the ratio of \displaystyle 1:2 and their interior angles are in the ratio of \displaystyle 3:4 , find the number of sides of the polygon.

Answer:

Polygon 1: Sides \displaystyle = n_1

Polygon 2: Sides \displaystyle = n_2

\displaystyle \text{Given: } \frac{n_1}{n_2} = \frac{1}{2}  

\displaystyle \Rightarrow 2n_1 = n_2 … … … … … i)

Also, their interior angles are in the ratio of \displaystyle 3:4

\displaystyle \text{Therefore } \frac{\Big( \frac{2n_1-4}{n_1} \Big) \times 90^o}{\Big( \frac{2n_2-4}{n_2} \Big) \times 90^o} = \frac{3}{4}  

\displaystyle \Rightarrow 4 \Big( \frac{2n_1-4}{n_1} \Big) = 3 \Big( \frac{2n_2-4}{n_2} \Big) … … … … … ii)

Substituting i) in ii) we get

\displaystyle 4 \Big( \frac{2n_1-4}{n_1} \Big) = 3 \Big( \frac{4n_1-4}{2n_1} \Big)

\displaystyle \Rightarrow 16n_1 - 32 = 12n_1 - 12

\displaystyle \Rightarrow 4n_1 = 20

\displaystyle \Rightarrow n_1 = 5

\displaystyle \text{Therefore } n_2 = 10

\displaystyle \\

Question 23: The number of sides of two regular polygons are in the ratio \displaystyle 3 : 4 and their sums of their interior angles are in the ratio \displaystyle 2 : 3 . Find the number of sides of each polygon.

Answer:

Polygon 1: Sides \displaystyle = n_1

Polygon 2: Sides \displaystyle = n_2

\displaystyle \text{Given: } \frac{n_1}{n_2} = \frac{3}{4}  

\displaystyle \Rightarrow 4n_1 = 3n_2 … … … … … i)

Also, their sum interior angles are in the ratio of \displaystyle 2:3

\displaystyle \text{Therefore } \frac{(2n_1 - 4) \times 90^o}{(2n_2-4) \times 90^o} = \frac{2}{3}  

\displaystyle \Rightarrow 3(2n_1-4) = 2(2n_2-4) … … … … … ii)

Substituting i) in ii) we get

\displaystyle 3(2n_1 - 4) = 2 (2 \times \frac{4}{3} n_1 - 4)

\displaystyle \Rightarrow 6n_1 - 12 = \frac{16}{3} n_1 - 8

\displaystyle \Rightarrow \frac{2}{3} n_1 = 4

\displaystyle \Rightarrow n_1 = 6

\displaystyle \text{Therefore } n_2 = \frac{4}{3} \times 6 = 8

\displaystyle \\

Question 24: The difference between the exterior angles of two regular polygons is \displaystyle 5^o . If the number of sides of a polygonal is one more than the other, find the number of sides of each Polygon.

Answer:

Polygon 1: Sides \displaystyle = n

Polygon 2: Sides \displaystyle = n+1

Exterior angle of polygon 1 \displaystyle = \frac{360}{n}  

Exterior angle of polygon 2 \displaystyle = \frac{360}{n+1}  

\displaystyle \text{Therefore } \frac{360}{n} - \frac{360}{n+1} = 5

\displaystyle \Rightarrow 360 n + 360 - 360n = 5n(n+1)

\displaystyle \Rightarrow 5n^2 + 5n - 360 = 0

\displaystyle \Rightarrow n^2 + n - 72 = 0

\displaystyle \Rightarrow (n+9)(n-8) = 0

\displaystyle \Rightarrow n = -9, 8

Now n cannot be a negative number. Hence \displaystyle n = 8 . This implies that polygon 2 has \displaystyle 9 sides.

\displaystyle \\

Question 25: A heptagon has \displaystyle 4 equal angles each of \displaystyle 132^o and three equal angles. Find the measure of equal angles.

Answer:

Heptagon: \displaystyle n = 7

\displaystyle \text{Sum of interior angles } = (2n-4) \times 90^o

\displaystyle \text{Therefore } (2 \times 7 - 4) \times 90^o = 4 \times 132^o + 3x

\displaystyle \Rightarrow 900^o = 528^o + 3x

\displaystyle \Rightarrow 3x = 372^o

\displaystyle \Rightarrow x = 124^o

\displaystyle \\

Question 26: Find the number of sides of a polygon if the sum of interior angles is six times the sum of its exterior angles.

Answer:

\displaystyle \text{Let the Number of sides } = n

Given sum of interior angles is six times the sum of its exterior angles

\displaystyle \text{Therefore } (2n-4)\times 90^o = 6 \times 360^o

\displaystyle \Rightarrow 2n-4 = 24

\displaystyle \Rightarrow 2n = 28

\displaystyle \Rightarrow n = 14

\displaystyle \\

Question 27: If the sum of interior angles of a pentagon are in the ratio \displaystyle 4 : 5 : 6 : 7 : 5 , find the angles.

Answer:

\displaystyle \text{Given: } n = 5

\displaystyle \text{Let the angles be } 4x, 5x, 6x, 7x \text{ and } 5x

\displaystyle \text{Sum of interior angles } = (2n-4) \times 90^o = 6 \times 90^o = 540^o

\displaystyle \text{Therefore } 4x + 5x + 6x + 7x + 5x = 540^o

\displaystyle \Rightarrow 27x = 540^o

\displaystyle \Rightarrow x = 20^o

Therefore the angles are \displaystyle 80^o, 100^o, 120^o, 140^o, 100^o

\displaystyle \\

Question 28: If the angles of a hexagon are \displaystyle (2x+ 5)^o, (3x -5)^o, (x + 40)^o, (2x +20)^o, (2x + 25)^o \text{ and } (2x + 35)^o , find the value of \displaystyle x .

Answer:

Angles of a hexagon are \displaystyle (2x+ 5)^o, (3x -5)^o, (x + 40)^o, (2x +20)^o, (2x + 25)^o \text{ and } (2x + 35)^o

Number of sides: \displaystyle n = 6

\displaystyle \text{Sum of interior angles } = (2n-4) \times 90^o = 8 \times 90^o = 720^o

\displaystyle \text{Therefore } 720^o = (2x+ 5)^o+ (3x -5)^o+ (x + 40)^o+ (2x +20)^o+ (2x + 25)^o + (2x+35)^o

\displaystyle \Rightarrow 720^o = 12x + 120^o

\displaystyle \Rightarrow 12x = 600^o

\displaystyle \Rightarrow x = 50^o

Therefore the angles are \displaystyle 105^o, 145^o, 90^o, 120^o, 125^o \text{ and } 135^o

\displaystyle \\

Question 29: The angles of a pentagon are \displaystyle x^o, (x-10)^o,(x+20)^o, (2x-44)^o \text{ and } (2x -70)^o Find the value of \displaystyle x .

Answer:

Pentagon: \displaystyle n = 5

\displaystyle \text{Sum of interior angles } = (2n-4) \times 90^o = 68 \times 90^o = 540^o

\displaystyle \text{Therefore } x^o + (x-10)^o + (x+20)^o + (2x-44)^o + (2x -70)^o = 540^o

\displaystyle \Rightarrow 7x - 104^o = 540^o

\displaystyle \Rightarrow 7x = 644^o

\displaystyle \Rightarrow x = 92^o

\displaystyle \\

Question 30: The measures of three exterior angles of a hexagon are \displaystyle 40^o, 51^o \text{ and } 86^o , if each of the remaining exterior angles is \displaystyle x^o , find the value of \displaystyle x^o .

Answer:

Hexagon: \displaystyle n = 6

Sum of the exterior angles \displaystyle = 360^o

\displaystyle \text{Therefore } 40^o + 51^o + 86^o + 3x = 360^o

\displaystyle \Rightarrow 3x = 360^o - 177^o = 183^o

\displaystyle \Rightarrow x = 61^o

\displaystyle \\

Question 31: In the adjoining figure \displaystyle ABCDE is a regular pentagon. Find the measures of the angles marked \displaystyle x, y, z .

Answer:

\displaystyle \text{Regular pentagon: } n = 5

\displaystyle \text{Interior Angle } = \Big( \frac{2n-4}{n} \Big) \times 90^o = \frac{6}{5} \times 90^o = 84^o

In the quadrilateral \displaystyle ABDE: \angle A + \angle z = 180^o \Rightarrow \angle z = 180^o -84^o = 96^o

Since \displaystyle AE = AB (sides of a regular pentagon)

\displaystyle \angle AEB = \angle ABE = x

\displaystyle \text{Therefore } 2x + 84^o = 180^o \Rightarrow x = 48^o

\displaystyle \text{Therefore } \angle BED = 84^o - 48^o = 36^o

Hence \displaystyle y = 180^o - 36^o - 96^o = 48^o

\displaystyle \\

Question 32: In a regular hexagon \displaystyle ABCDEF , prove that \displaystyle \triangle ACE is an equilateral triangle.

Answer:

\displaystyle \text{To prove: } \triangle ACE is equilateral triangle

Consider \displaystyle \triangle ABC \text{ and } \triangle DCE

\displaystyle CB = DC

\displaystyle AB = ED

\displaystyle \angle ABC = \angle CDE

\displaystyle \text{Therefore } \triangle ABC \cong \triangle DCE (By S.A.S criterion)

\displaystyle \Rightarrow AC = EC

Similarly, \displaystyle \triangle AEF \cong \triangle DEC

\displaystyle \Rightarrow AE = EC

\displaystyle \text{Therefore } AC = EC = AE

\displaystyle \Rightarrow \triangle ACE is equilateral

\displaystyle \\

Question 33: In a regular pentagon \displaystyle ABCDE , show that \displaystyle AB is parallel to \displaystyle EC

Answer:

\displaystyle \text{To prove: } AP \parallel EC

\displaystyle n = 5

\displaystyle \text{Interior Angle } = \Big( \frac{2n - 4}{n} \Big) \times 90^o = \frac{6}{5} \times 90^o = 6 \times 18 = 108^o

Noe in \displaystyle \triangle CDE \displaystyle CD = ED

\displaystyle \Rightarrow \angle DCE = \angle DEC = 36^o

\displaystyle \Rightarrow \angle BCE = 108^o - 36^o = 72^o

\displaystyle \Rightarrow \angle ABC + \angle BCE = 108^o + 72^o = 180^o

Similarly, \displaystyle \angle CEA = 108^o - 36^o = 72^o

\displaystyle \text{Therefore } \angle BAE + \angle AEC = 108^o + 72^o = 180^o

\displaystyle \text{Therefore } AB \parallel CE since the sum of the interior alternate angles is \displaystyle 180^o

\displaystyle \\

Question 34: If in a pentagon \displaystyle ABCDE , we have

(i) \displaystyle AE \parallel BC, \angle C = 153, \angle D = x^o \text{ and } \angle E = 2x^o , find the value of \displaystyle x .

(ii) \displaystyle \angle A = 110^o, \angle B = 142^o , \angle D = \angle E and sides \displaystyle AB \text{ and } DC when produced meet at right angles, find \displaystyle \angle BCD \text{ and } \angle E

(iii) \displaystyle AB = AE,BC=ED \text{ and } \angle ABC = \angle AED prove that \displaystyle AC = AD \text{ and } \angle BCD = \angle EDC

(iv) \displaystyle BC \text{ and } ED are produced to meet at \displaystyle X , prove that \displaystyle BX = EX

(v) \displaystyle AB \parallel ED, \angle B = 140^o \text{ and } \angle C : \angle D = 5: 6 , find \displaystyle \angle C \text{ and } \angle D

Answer:

(i) \displaystyle AE \parallel BC, \angle C = 153, \angle D = x^o \text{ and } \angle E = 2x^o , find the value of \displaystyle x .

\displaystyle \text{Regular pentagon: } n = 5

\displaystyle \text{Sum of interior angles } = (2n-4) \times 90^o = 6 \times 90^o = 540^o

\displaystyle \text{Therefore } 180^o + 153^o + 3x = 540^o

\displaystyle \Rightarrow 3x = 207^o

\displaystyle \Rightarrow x = 69^o

(ii) \displaystyle \angle A = 110^o, \angle B = 142^o , \angle D = \angle E and sides \displaystyle AB \text{ and } DC when produced meet at right angles, find \displaystyle \angle BCD \text{ and } \angle E

\displaystyle \angle BCD = 108

\displaystyle \text{Therefore } 110^o + 142^o + 128^o + 2x = (2 \times 5 -4) \times 90

\displaystyle \Rightarrow 400^o + 2x = 540^o

\displaystyle \Rightarrow x = 80^o . Hence \displaystyle \angle E = 80^o

(iii) \displaystyle AB = AE,BC=ED \text{ and } \angle ABC = \angle AED prove that \displaystyle AC = AD \text{ and } \angle BCD = \angle EDC

Consider \displaystyle \triangle ABC \text{ and } \triangle AED

\displaystyle AB = AE

\displaystyle BC = ED

\displaystyle \angle ABC = \angle AED

\displaystyle \text{Therefore } \triangle ABC \cong \triangle AED (By S.A.S criterion)

\displaystyle \text{Therefore } AC = AD

\displaystyle \text{Therefore } \angle ACD = \angle ADC

Also since \displaystyle AB = BC= AE = AD

\displaystyle \angle BAC = \angle BCA = \angle EAD = \angle EDA

\displaystyle \text{Therefore } \angle BCA + \angle ACD =\angle EDA + \angle ADC

\displaystyle \Rightarrow \angle BCD = \angle EDC

(iv) \displaystyle BC \text{ and } ED are produced to meet at \displaystyle X , prove that \displaystyle BX = EX

Assuming that \displaystyle ABCDE is a regular pentagon

\displaystyle \text{To prove: } BX = EX

\displaystyle \angle BCD = \angle EDC

\displaystyle \Rightarrow XCD = \angle XDC

\displaystyle \Rightarrow CX = DX

\displaystyle \text{Therefore } BC + CX = ED + DX

\displaystyle \Rightarrow BX = EX

(v) \displaystyle AB \parallel ED, \angle B = 140^o \text{ and } \angle C : \angle D = 5: 6 , find \displaystyle \angle C \text{ and } \angle D

\displaystyle n = 5

Sum of internal angles \displaystyle = (2n-4) \times 90^o = 6 \times 90^o = 540^o

\displaystyle \text{Therefore } 540^o = 140^o + 180^o + 5x + 6x

\displaystyle \Rightarrow 11x = 220^o

\displaystyle \Rightarrow x = 20^o

\displaystyle \text{Therefore } \angle C = 100^o, \ \ \ \angle D = 120^o

\displaystyle \\

Question 35: \displaystyle ABCDE is a regular pentagon such that diagonal \displaystyle AD divides \displaystyle \angle CDE into two parts. Find the ratio \displaystyle \frac{ \angle ADE}{ \angle ADC}  

Answer:

\displaystyle \text{Regular pentagon: } n = 5

Internal angle \displaystyle = \frac{2n-4}{n} \times 90^o = \frac{6}{5} \times 90^o = 108^o

In \displaystyle \triangle AED

\displaystyle x + x + 108^o = 180^o

\displaystyle \Rightarrow 2x = 72^o

\displaystyle \Rightarrow x = 36^o

\displaystyle \text{Therefore } y = 108^o - 36^o = 72^o

\displaystyle \text{Therefore } \frac{\angle ADE}{\angle ADC} = \frac{36^o}{72^o} = \frac{1}{2}  

Therefore the ratio of \displaystyle \angle ADE : \angle ADC = 1:2