Question 1: Find \displaystyle AD :

Answer:

\displaystyle \frac{AE}{BE} = \tan 32^{\circ}

\displaystyle \Rightarrow AE = 20 \times \tan 32^{\circ} = 12.

\displaystyle AD = 5 + 12.5 = 17.5 \text{ m }

\displaystyle \\

Question 2: In the following diagram, \displaystyle AB is a floor-board; \displaystyle PQRS is a cubical box with each edge \displaystyle = 1 \text{ m } and \displaystyle \angle B = 60^{\circ} . Calculate the length of the board \displaystyle AB .

Answer:

\displaystyle \frac{PS}{PB} = \sin 60^{\circ}

\displaystyle PB = \frac{1}{\sin 60^{\circ}} = 1.15

\displaystyle \frac{PQ}{AP} = \cos 60^{\circ}

\displaystyle AP = \frac{1}{\cos 60^{\circ}} = 2

\displaystyle \therefore AB = PB + AP = 1.15 + 3 = 3.15 \text{ m }

\displaystyle \\

Question 3: Calculate \displaystyle BC .

Answer:

\displaystyle \frac{CD}{20} = \tan 42^{\circ}

\displaystyle CD = 20 \tan 42^{\circ} = 18

\displaystyle \frac{20}{BC+18} = \tan 35^{\circ}

\displaystyle 20 = BC \tan 35^{\circ} + 18 \tan 35^{\circ}

\displaystyle BC = \frac{20 - 18 \tan 35^{\circ}}{\tan 35^{\circ}} = 10.56

\displaystyle \\

Question 4: Calculate \displaystyle AB .

Answer:

\displaystyle \frac{AX}{6} = \cos 30^{\circ}

\displaystyle AX = 6 \cos 30^{\circ} = 5.196 \text{ m }

\displaystyle \frac{XB}{5} = \cos 43^{\circ}

\displaystyle XB = 5 \cos 43^{\circ} = 3.856 \text{ m }

\displaystyle AB = 5.196 + 3.856 = 8.85 \text{ m }

\displaystyle \\

Question 5: The radius of a circle is given as \displaystyle 15 \text{ cm } and chord \displaystyle AB subtends an angle of \displaystyle 131^{\circ} at the center \displaystyle C of the circle. Using trigonometry, calculate: (i) the length of \displaystyle AB ; (ii) the distance of \displaystyle AB from the center \displaystyle C .

Answer:

\displaystyle \frac{AX}{15} = \cos 24.5^{\circ}

\displaystyle AX = 15 \cos 24.5^{\circ} = 13.64 \text{ cm }

Therefore \displaystyle AB = 2 \times 13.64 = 27.3 \text{ cm }

\displaystyle \frac{OX}{15} = \sin 24.5^{\circ}

\displaystyle OX = 15 \sin 24.5^{\circ} = 6.22 \text{ cm }

\displaystyle \\

Question 6: At a point on level ground, the angle of elevation of a vertical tower is found to be such that its tangent is \displaystyle \frac{5}{12} on walking \displaystyle 192 \text{ m } eters towards the tower; the tangent of the angle is found to be \displaystyle \frac{3}{4} Find the height of the tower.

Answer:

\displaystyle \frac{h}{DB} = \frac{3}{4} \Rightarrow h = DB . \frac{3}{4}  

\displaystyle \frac{h}{CB} = \frac{5}{12} \Rightarrow h = \frac{5}{12} (192+DB)

Therefore

\displaystyle \frac{5}{12} (192+DB) = DB . \frac{3}{4}  

\displaystyle 960 + 5 DB = 9 DB \Rightarrow DB = 240 \text{ m }

\displaystyle \text{Hence } h = 240 \times \frac{3}{4} = 180 \text{ m }

\displaystyle \\

Question 7: A vertical tower stands on horizontal plane and is surmounted by a vertical flagstaff of height \displaystyle h \text{ m } eter. At a point on the plane, the angle of elevation of the bottom of the flagstaff is \displaystyle \alpha and that of the top of flagstaff is \displaystyle \beta . Prove that the height of the tower is \displaystyle \frac{h \tan \alpha}{\tan \beta - \tan \alpha} .

Answer:

\displaystyle \frac{h+DB}{CB} = \tan \beta

\displaystyle \frac{DB}{CB} = \tan \alpha

\displaystyle CB = \frac{DB}{\tan \alpha}  

\displaystyle \frac{h + DB}{\frac{DB}{\tan \alpha}} = \tan \beta

\displaystyle h + DB = DB \Big( \frac{ \tan \beta}{\tan \alpha} \Big)

\displaystyle \Rightarrow h = \Big( \frac{\tan \beta - \tan \alpha}{\tan \alpha} \Big) DB

\displaystyle \therefore DB = \Big( \frac{\tan \alpha}{\tan \beta - \tan \alpha} \Big) h

\displaystyle \\

Question 8: With reference to the given figure of a man stands on the ground at point \displaystyle A , which is on the same horizontal plane as \displaystyle B , the foot of the vertical pole \displaystyle BC . The height of the pole is \displaystyle 10 m . The man’s eye is \displaystyle 2 \text{ m } above the ground. He observes the angle of elevation of \displaystyle C , the top of the pole, as \displaystyle x^{\circ} where \displaystyle \tan x = \frac{2}{5} Calculate: (i) the distance \displaystyle AB in meters; (ii) angle of elevation of the top of the pole when he is standing \displaystyle 15 \text{ m } eters from the pole. Give your answer to the nearest degree. [1999]

Answer:

\displaystyle \tan x = \frac{2}{5}  

\displaystyle \frac{CE}{DE} = \frac{2}{5}  

\displaystyle DE = \frac{5}{2} \times ( 10 - 2) = 20 \text{ m }

i) \displaystyle AB = DE = 20 \text{ m }

ii) if the distance from pole \displaystyle = 15 \text{ m }

\displaystyle \therefore \tan y = \frac{8}{15} = 0.5333 \Rightarrow y = 28.072^{\circ}

\displaystyle \\

Question 9: The angles of elevation of the top of a tower from two points on the ground at distances \displaystyle a and \displaystyle b \text{ m } eters from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is \displaystyle \sqrt{ab} \text{ m } .

Answer:

\displaystyle \tan \alpha = \frac{h}{a}  

\displaystyle \tan \beta = \frac{h}{b}  

\displaystyle \alpha + \beta = 90^{\circ}

\displaystyle \tan (\alpha + \beta) = \tan (90^{\circ})

\displaystyle \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha . \tan \beta} = \tan (90^{\circ})

\displaystyle \Rightarrow 1 - \tan \alpha . \tan \beta = 0

\displaystyle \frac{h}{a} . \frac{h}{b} = 1

\displaystyle \Rightarrow h^2 = ab

\displaystyle \Rightarrow h = \sqrt{ab}

\displaystyle \\

Question 10: From a window \displaystyle A , \displaystyle 10 \text{ m } above the ground the angle of elevation of the top \displaystyle C of a tower is \displaystyle x^{\circ} , where \displaystyle \tan x^{\circ} = \frac{5}{2} and the angle of depression of the foot \displaystyle D of the tower is \displaystyle y^{\circ} where \displaystyle \tan y^{\circ} = \frac{1}{4} . See the given figure. Calculate the height \displaystyle CD of the tower in meters. [2000]

Answer:

\displaystyle \tan x = \frac{5}{2} \Rightarrow \frac{EC}{AE} = \frac{5}{2}  

\displaystyle \tan y = \frac{1}{4} \Rightarrow \frac{ED}{AE} = \frac{1}{4} \Rightarrow AE = 4 \times 10 = 10 \text{ m }

\displaystyle \therefore EC = 40 \times \frac{5}{2} = 100 \text{ m }

\displaystyle \therefore CD = ED + EC = 10 + 100 = 110 \text{ m }

\displaystyle \\

Question 11: A vertical tower is \displaystyle 20 \text{ m } high. A man standing at some distance from the tower knows that the cosine of the angle of elevation of the top of the tower is \displaystyle 0.53 . How far is he standing from the foot of the tower?

Answer:

\displaystyle \cos \theta = 0.53

\displaystyle \Rightarrow \frac{AB}{CB}  

\displaystyle CB = \sqrt{20^2 + x^2}

\displaystyle \therefore x = 0.53 \sqrt{20^2 + x^2}

\displaystyle 3.56 x^2 = 20^2 + x^2

\displaystyle \Rightarrow x = \sqrt{ \frac{400}{2.56} }

\displaystyle \Rightarrow x = 12.5 \text{ m }

\displaystyle \\

Question 12: A man standing on the bank of a river observes that the angle of elevation of the top of the tower is \displaystyle 60^{\circ}. When he moves \displaystyle 50 \text{ m } away from the bank. he finds the angle of elevation to be \displaystyle 30^{\circ}. Calculate: (i) the width of the river and (ii) the height of the tree. [2003]

Answer:

Let the height of the tree \displaystyle = h

Let the width of the river \displaystyle = w

\displaystyle \therefore \frac{h}{w} = \tan 60^{\circ} = \sqrt{3}

\displaystyle \frac{h}{w+50} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}  

\displaystyle \therefore h = \sqrt{3} w

\displaystyle \Rightarrow \sqrt{3} h = w + 50

\displaystyle \Rightarrow \sqrt{3} (\sqrt{3} w) = w + 50

\displaystyle \Rightarrow 3w = w + 50

\displaystyle \Rightarrow 2w = 50

\displaystyle \Rightarrow w = 25 \text{ m }

\displaystyle \therefore h = 25\sqrt{3} = 43.3 \text{ m }

\displaystyle \\

Question 13: A \displaystyle 20 m high vertical pole and a vertical tower are on the same level ground in such a way that the angle of elevation of the top of the tower, as seen from the foot of the pole, is \displaystyle 60^{\circ} and angle of elevation of the top of the pole as seen from the foot of the tower is \displaystyle 30^{\circ}. Find: (i) the height of the tower (ii) the horizontal distance between the pole and the tower.

Answer:

\displaystyle \frac{20}{CB} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}  

\displaystyle CB = 20\sqrt{3} \text{ m }

\displaystyle \therefore \frac{AB}{CB} = \tan 60^{\circ} = \sqrt{3}

\displaystyle \Rightarrow AB = 20 \sqrt{3} \times \sqrt{3} = 60 \text{ m }

\displaystyle \\

Question 14: A vertical pole and vertical tower are on the same ground level ground in such a way that from the top of the pole the angle of elevation of the top of the tower is \displaystyle 60^{\circ} and the angle of depression of the bottom of the tower is \displaystyle 30^{\circ} Find: (i) the height of the tower, if the height of the pole is \displaystyle 20 m ;(ii)the height of the pole; if the height of the tower is \displaystyle 75 \text{ m.}

Answer:

i) \displaystyle \frac{DE}{AE} = \tan 60 \Rightarrow DE = AE (\sqrt{3})

\displaystyle \frac{EC}{AE} = \tan 30 \Rightarrow 20 \sqrt{3}

\displaystyle \therefore DE = 60 \text{ m }

Height of tower \displaystyle = 60 + 20 = 80 \text{ m }

\displaystyle \text{ii) } \frac{75-h}{AE} = \tan 60 \Rightarrow 75 - h = \sqrt{3} AE

\displaystyle \frac{h}{AE} = \tan 30 \Rightarrow AE = \sqrt{3} h

\displaystyle \therefore 75 - h = \sqrt{3} (\sqrt{3} h)

\displaystyle 75 = 4 - h

\displaystyle h = 18.5 \text{ m }

\displaystyle \\

Question 15: From a point, \displaystyle 36 m above the surface of a lake, the angle of elevation of a bird is observed to be \displaystyle 30^{\circ} and the angle of depression of its image in the water of the lake is observed to be \displaystyle 60^{\circ}. Find the actual height of the bird above the surface of the lake.

Answer:

\displaystyle \frac{h}{BC} = \tan 30 \Rightarrow BC = \sqrt{3} h

\displaystyle \frac{EF + 36}{BC} = \tan 60

\displaystyle \Rightarrow EF + 36 = \sqrt{3} h ( \sqrt{3}) = 3h

\displaystyle \therefore EF = 3h - 36

Now, \displaystyle AE = EF

\displaystyle \Rightarrow h + 36 = 3h - 36

\displaystyle \Rightarrow 72 = 2h

\displaystyle \Rightarrow h = 36 \text{ m }

Therefore height of the bird \displaystyle = 72 \text{ m }

\displaystyle \\

Question 16: A man observes the angle of elevation of the top of a building to be \displaystyle 30^{\circ}. He walks towards it in a horizontal line through its base. On covering \displaystyle 60 m , the angle of elevation changes to \displaystyle 60^{\circ} . Find the height of the building correct to the nearest meter.

Answer:

\displaystyle \frac{h}{CB} = \tan 60 \Rightarrow CB = \frac{h}{\sqrt{3}}  

\displaystyle \frac{h}{DB} = \tan 30 \Rightarrow DB = \sqrt{3} h

\displaystyle \therefore \sqrt{3} h - \frac{h}{\sqrt{3}} = 60

\displaystyle \Rightarrow h \Big( \frac{3-1}{\sqrt{3}} \Big) = 60

\displaystyle h = 30 \sqrt{3} = 51.96 \text{ m } \displaystyle \approx 52 \text{ m }

\displaystyle \\

Question 17: As observed from the top of a, \displaystyle 80 m tall lighthouse, the angles of depression of two ships, on the same side of the lighthouse in horizontal line with its base, are \displaystyle 30^{\circ} and \displaystyle 40^{\circ} respectively. Find the distance between the two ships. Give your answer correct to the nearest meter. [2012]

Answer:

\displaystyle \frac{80}{BC} = \tan 40 \Rightarrow \frac{80}{0.839} = 95.34

\displaystyle \frac{80}{BC+CD} = \tan 30

\displaystyle \Rightarrow 80\sqrt{3} = 95.34 + CD

\displaystyle CD = 43.22 \text{ m } \displaystyle \approx 43 \text{ m }

\displaystyle \\

Question 18: In the given figure, from the top of a building \displaystyle AB = 60 m high, the angles of depression of the top and bottom of a vertical lamp post \displaystyle CD are observed to be \displaystyle 30^{\circ} and \displaystyle 60^{\circ} respectively. Find: (i) the horizontal distance between \displaystyle AB and \displaystyle CD . (ii) the height of the lamp Post.

Answer:

i) \displaystyle \frac{60}{BC} = \tan 60 \Rightarrow BC = \frac{60}{\sqrt{3}} = 20 \sqrt{3} = 34.34 \text{ m }

ii) \displaystyle \frac{60-h}{20\sqrt{3}} = \tan 30 \Rightarrow \frac{60-h}{20\sqrt{3}} = \frac{1}{\sqrt{3}} \Rightarrow h = 40 \text{ m }

\displaystyle \\

Question 19: An airplane, at an altitude of \displaystyle 250 m observes the angles of depression of two boats on the opposite banks of a river to be \displaystyle 45^{\circ} and \displaystyle 60^{\circ} respectively. Find the width of the river. Write the answer correct to the nearest whole number. [2014]

Answer:

\displaystyle \frac{250}{BD} = \tan 45 \Rightarrow BD = 250 \text{ m }

\displaystyle \frac{250}{CD} = \tan 60 \Rightarrow CD = \frac{250}{\sqrt{3}}  

Therefore the width of the river

\displaystyle = BD + CD = 250 + \frac{250}{\sqrt{3}} = 250 + 144.34 = 394.34 \text{ m }