Question 1: Given ,
,
, find
.
Answer:
Given ,
,
Question 2: If ,
,
, find
,
,
.
Answer:
Given ,
,
Now
Now
and
Question 3: If ,
,
, then verify that: (i)
(ii)
(iii)
.
Answer:
i) Given ,
,
… i)
Now
and
… ii)
From i) and ii) we get
. Hence Proved.
ii) Given ,
,
… … … … … i)
Now
… ii)
From i) and ii) we get
iii) Given ,
,
… … … … … i)
Now
and
… ii)
From i) and ii) we get
Question 4: Let ,
,
and
. Verify that: (i)
(ii)
Answer:
i) Given ,
,
and
… … i)
… ii)
From i) and ii) we see
ii) Given ,
,
and
… … …i)
Now,
and
… … … … … ii)
From i) and ii) we get
Question 5: If ,
and
, find
(i) (ii)
(iii)
(iv)
Answer:
i) Given ,
and
ii) Given ,
and
iii) Given ,
and
iv) Given ,
and
Question 6: Prove that(i) (ii)
Answer:
i) Let be any arbitrary elements of
and
and
or
or
… … i)
Let be any arbitrary elements of
or
or
or
and
… … ii)
From i) and ii) we get
ii) Let be any arbitrary elements of
and
and
and
and
… … i)
Let be any arbitrary elements of
and
and
and
and
… … ii)
From i) and ii) we get
Question 7: If. and
, prove that
and
.
Answer:
Let be any arbitrary elements of
. Then
and
… … … i)
Now,
and
… … … ii)
and
Hence Proved.