Question 1: Find the values of the following trigonometric ratios:
i)
ii)
iii)
iv)
v)
vi)
vii)
viii)
ix)
x)
xi)
xii)
xiii)
xiv)
Answer:
i)
ii)
for all
iii)
iv)
[Note:
]
v)
vi)
vii)
viii)
ix)
x)
xi)
xii)
xiii)
xiv)
Question 2: Prove that:
i)
ii)
iii)
iv)
v)
vi)
vii)
Answer:
i) LHS
RHS. Hence proved.
ii) LHS
iii) LHS
RHS. Hence proved.
iv) LHS
RHS. Hence proved.
v) LHS
RHS. Hence proved.
vi) LHS
RHS.
vi) LHS
RHS. Hence proved.
Question 3: Prove that:
i)
ii)
iii)
iv)
v)
Answer:
i) LHS
RHS
ii) LHS
RHS. Hence proved.
iii) LHS
RHS. Hence proved.
iv) LHS
RHS. Hence proved.
v) LHS
RHS. Hence proved.
Question 4: Prove that:
Answer:
LHS
RHS. Hence proved.
Question 5: Prove that:
Answer:
LHS
RHS. Hence proved.
Question 6: In a , prove that: i)
ii)
iii)
Answer:
i) LHS
RHS. Hence proved.
ii) LHS
Hence proved.
iii) LHS
Hence proved.
Question 7: If A, B, C, D be the angles of a cyclic quadrilateral, taken in order, prove that:
Answer:
Given
LHS
RHS. Hence proved.
Question 8: Find from the following equations:
i)
ii)
Answer:
i)
ii)
Question 9: Prove that:
i)
ii)
iii)
iv)
v)
Answer:
i) LHS
RHS. Hence proved.
ii) LHS
RHS. Hence proved.
iii) LHS
RHS. Hence proved.
iv) LHS
RHS. Hence proved.
v) LHS
RHS. Hence proved.