Solve the following linear inequations in \displaystyle R

Question 1: Solve: \displaystyle 12x < 50 when 

\displaystyle \text{i) }  x \in R  \hspace{1.0cm}  \text{ii) }  x \in Z  \hspace{1.0cm}  \text{iii) }  x \in N

Answer:

\displaystyle \text{ Given }  12x < 50 \Rightarrow x < \frac{25}{6}  

\displaystyle \text{i) }  \text{If }  \Rightarrow x \in R

\displaystyle \text{Therefore the solution of the given inequation is}  \Big( -\infty, \frac{25}{6} \Big)

\displaystyle \text{ii) }  \text{If }  x \in Z

\displaystyle \text{Therefore the solution of the given inequation is}  \{ -\infty, \ldots , -3, -2, -1, 0 , 1, 2, 3, 4 \}

\displaystyle \text{iii) }  \text{If }  x \in N

\displaystyle \text{Therefore the solution of the given inequation is}  \{ 1, 2, 3, 4 \}

\displaystyle \\

Question 2: Solve: \displaystyle -4x > 30 when

\displaystyle \text{i) }  x \in R  \hspace{1.0cm}  \text{ii) }  x \in Z  \hspace{1.0cm}  \text{iii) }  x \in N

Answer:

\displaystyle \text{ Given }  -4x > 30 \Rightarrow x < - \frac{15}{2}  

\displaystyle \text{i) }  \text{If }  \Rightarrow x \in R

\displaystyle \text{Therefore the solution of the given inequation is}  \Big( -\infty, \frac{-15}{2} \Big)

\displaystyle \text{ii) }  \text{If }  x \in Z

\displaystyle \text{Therefore the solution of the given inequation is}  \{ -\infty, \ldots , -9, -8 \}

\displaystyle \text{iii) }  \text{If }  x \in N

\displaystyle \text{Therefore the solution of the given inequation is}  \phi This is null set.

\displaystyle \\

Question 3: Solve: \displaystyle 4x-2 < 8 when

\displaystyle \text{i) }  x \in R  \hspace{1.0cm}  \text{ii) }  x \in Z  \hspace{1.0cm}  \text{iii) }  x \in N

Answer:

\displaystyle \text{ Given }  4x-2 < 8 \Rightarrow 4x < 10 \Rightarrow x < \frac{5}{2}  

\displaystyle \text{i) }  \text{If }  \Rightarrow x \in R

\displaystyle \text{Therefore the solution of the given inequation is}  \Big( -\infty, \frac{5}{2} \Big)

\displaystyle \text{ii) }  \text{If }  x \in Z

\displaystyle \text{Therefore the solution of the given inequation is}  \{ -\infty, \ldots , -3, -2, -1, 0 , 1, 2 \}

\displaystyle \text{iii) }  \text{If }  x \in N

\displaystyle \text{Therefore the solution of the given inequation is}  \{ 1, 2 \}

\displaystyle \\

Question 4: \displaystyle 3x-7 > x + 1

Answer:

\displaystyle \text{ Given }  3x-7 > x + 1 \Rightarrow 2x > 8 \Rightarrow x > 4

\displaystyle \text{Therefore the solution of the given inequation is}  (4, \infty)

\displaystyle \\

Question 5: \displaystyle x+5 > 4x-10

Answer:

\displaystyle \text{ Given }  x+5 > 4x-10 \Rightarrow 3x < 15 \Rightarrow x < 5

\displaystyle \text{Therefore the solution of the given inequation is}  (-\infty , 5)

\displaystyle \\

Question 6: \displaystyle 3x+9 \geq -x+19

Answer:

\displaystyle \text{ Given }  3x+9 \geq -x+19 \Rightarrow 4x \geq 10 \Rightarrow x \geq \frac{5}{2}  

\displaystyle \text{Therefore the solution of the given inequation is}  \Big[ \frac{5}{2} , -\infty \Big)

\displaystyle \\

\displaystyle \text{Question 7: } 2( 3 - x) \geq \frac{x}{5} +4

Answer:

\displaystyle 2( 3 - x) \geq \frac{x}{5} +4

\displaystyle \Rightarrow 6-2x \geq \frac{x}{5} + 4

\displaystyle \Rightarrow \frac{x}{5} + 2x \leq 2

\displaystyle \Rightarrow x \leq \frac{10}{11}  

\displaystyle \text{Therefore the solution of the given inequation is}  \Big( -\infty, \frac{10}{11} \Big)

\displaystyle \\

\displaystyle \text{Question 8: } \frac{3x-2}{5} \leq \frac{4x-3}{2}  

Answer:

\displaystyle \frac{3x-2}{5} \leq \frac{4x-3}{2}  

\displaystyle \Rightarrow 6x-4 \leq 20x-15

\displaystyle \Rightarrow 14x \geq 11

\displaystyle \Rightarrow x \geq \frac{11}{14}  

\displaystyle \text{Therefore the solution of the given inequation is}  \Big[ \frac{11}{14} , \infty \Big)

\displaystyle \\

Question 9: \displaystyle -(x-3) +4 < 5 - 2x

Answer:

\displaystyle -(x-3) +4 < 5 - 2x

\displaystyle \Rightarrow -x+3+4 <5 -2x

\displaystyle \Rightarrow x < -2

\displaystyle \text{Therefore the solution of the given inequation is}  (- \infty , -2)

\displaystyle \\

\displaystyle \text{Question 10: } \frac{x}{5} < \frac{3x-2}{4} - \frac{5x-3}{5}  

Answer:

\displaystyle \frac{x}{5} < \frac{3x-2}{4} - \frac{5x-3}{5}  

\displaystyle \frac{x}{5} < \frac{15x-10-20x+12}{20}  

\displaystyle \Rightarrow 4x < -5x+2

\displaystyle \Rightarrow 9x < 2

\displaystyle \Rightarrow x < \frac{2}{9}  

\displaystyle \text{Therefore the solution of the given inequation is}  \Big[ - \infty, \frac{2}{9} , \Big)

\displaystyle \\

\displaystyle \text{Question 11: } \frac{2(x-1)}{5} \leq \frac{3(2+x)}{7}  

Answer:

\displaystyle \frac{2(x-1)}{5} \leq \frac{3(2+x)}{7}  

\displaystyle \Rightarrow \frac{2x-2}{5} \leq \frac{6+3x}{7}  

\displaystyle \Rightarrow 14x-14 \leq 30+15x

\displaystyle \Rightarrow x \geq -44

\displaystyle \text{Therefore the solution of the given inequation is}  [-44, \infty)

\displaystyle \\

\displaystyle \text{Question 12: } \frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}  

Answer:

\displaystyle \frac{5x}{2} + \frac{3x}{4} \geq \frac{39}{4}  

\displaystyle \Rightarrow 10x + 3x \geq 39

\displaystyle \Rightarrow x \geq 3

\displaystyle \text{Therefore the solution of the given inequation is}  [ 3, \infty)

\displaystyle \\

\displaystyle \text{Question 13: } \frac{x-1}{3} + 4 < \frac{x-5}{5} -2

Answer:

\displaystyle \frac{x-1}{3} + 4 < \frac{x-5}{5} -2

\displaystyle \Rightarrow \frac{x-1+12}{3} < \frac{x-5-10}{5}  

\displaystyle \Rightarrow 5(x+11) < 3 ( x- 15)

\displaystyle \Rightarrow 5x + 55 < 3x - 45

\displaystyle \Rightarrow 2x < - 100

\displaystyle \Rightarrow x < - 50

\displaystyle \text{Therefore the solution of the given inequation is}  ( -\infty, -50 )

\displaystyle \\

\displaystyle \text{Question 14: } \frac{2x+3}{4} - 3 < \frac{x-4}{3} -2

Answer:

\displaystyle \frac{2x+3}{4} - 3 < \frac{x-4}{3} -2

\displaystyle \Rightarrow \frac{2x+3-12}{4} < \frac{x-4-6}{3}  

\displaystyle \Rightarrow \frac{2x-9}{4} < \frac{x-10}{3}  

\displaystyle \Rightarrow 6x-27 < 4x-40

\displaystyle \Rightarrow 2x < -13

\displaystyle \Rightarrow x < \frac{-13}{2}  

\displaystyle \text{Therefore the solution of the given inequation is}  \Big( -\infty, \frac{-13}{2} \Big)

\displaystyle \\

\displaystyle \text{Question 15: } \frac{5-2x}{3} < \frac{x}{6} -5

Answer:

\displaystyle \frac{5-2x}{3} < \frac{x}{6} -5

\displaystyle \Rightarrow 10-4x < x - 30

\displaystyle \Rightarrow 5x > 40

\displaystyle \Rightarrow x > 8

\displaystyle \text{Therefore the solution of the given inequation is}  ( 8, \infty )

\displaystyle \\

\displaystyle \text{Question 16: } \frac{4+2x}{3} \geq \frac{x}{2} -3

Answer:

\displaystyle \frac{4+2x}{3} \geq \frac{x}{2} -3

\displaystyle \Rightarrow 8+4x \geq 3x-18

\displaystyle \Rightarrow x \geq -26

\displaystyle \text{Therefore the solution of the given inequation is}  [ -26, \infty )

\displaystyle \\

\displaystyle \text{Question 17: } \frac{2x+3}{5} - 2 < \frac{3(x-2)}{5}  

Answer:

\displaystyle \frac{2x+3}{5} - 2 < \frac{3(x-2)}{5}  

\displaystyle \Rightarrow 2x+3-10 < 3x-6

\displaystyle \Rightarrow x > -1

\displaystyle \text{Therefore the solution of the given inequation is}  ( -1, \infty )

\displaystyle \\

\displaystyle \text{Question 18: } x-2 \leq \frac{5x+8}{3}  

Answer:

\displaystyle x-2 \leq \frac{5x+8}{3}  

\displaystyle \Rightarrow 3x-6 \leq 5x + 8

\displaystyle \Rightarrow -14 \leq 2x

\displaystyle \Rightarrow x \geq -7

\displaystyle \text{Therefore the solution of the given inequation is}  [ -7, \infty )

\displaystyle \\

\displaystyle \text{Question 19: } \frac{6x-5}{4x+1} < 0

Answer:

\displaystyle \frac{6x-5}{4x+1} < 0

Case I: \displaystyle 6x-5 > 0 \hspace{1.0cm} \& \hspace{1.0cm} 4x+1 < 0

\displaystyle \Rightarrow x > \frac{5}{6} \hspace{1.0cm} \&  \hspace{1.0cm} x < \frac{-1}{4}  

This is not possible

Case II: \displaystyle 6x-5 < 0 \hspace{1.0cm} \& \hspace{1.0cm} 4x+1 > 0

\displaystyle \Rightarrow x < \frac{5}{6} \hspace{1.0cm} \&  \hspace{1.0cm} x > \frac{-1}{4}  

\displaystyle \text{Therefore the solution set for the inequation is } \Big( \frac{-1}{4} , \frac{5}{6} \Big)

\displaystyle \\

\displaystyle \text{Question 20: } \frac{2x-3}{3x-7} > 0

Answer:

\displaystyle \frac{2x-3}{3x-7} > 0

Case I: \displaystyle 2x-3 > 0 \hspace{1.0cm} \& \hspace{1.0cm} 3x-7 > 0

\displaystyle \Rightarrow x > \frac{3}{2} \hspace{1.0cm} \&  \hspace{1.0cm} x > \frac{7}{3}  

\displaystyle \Rightarrow x > \frac{7}{3}  

Case II: \displaystyle 2x-3 < 0 \hspace{1.0cm} \& \hspace{1.0cm} 3x-7 < 0

\displaystyle \Rightarrow x < \frac{3}{2} \hspace{1.0cm} \&  \hspace{1.0cm} x < \frac{7}{3}  

\displaystyle \Rightarrow x < \frac{3}{2}  

\displaystyle \text{Therefore the solution set for the inequation is } \Big( -\infty, \frac{3}{2} \Big) \cup \Big( \frac{7}{3} , \infty \Big)

\displaystyle \\

\displaystyle \text{Question 21: } \frac{3}{x-2} < 1

Answer:

\displaystyle \frac{3}{x-2} < 1

\displaystyle \Rightarrow \frac{3}{x-2} - 1 < 0 \ \ \Rightarrow \frac{3-x+2}{x-2} < 0 \ \ \Rightarrow \frac{-x+5}{x-2} < 0

Case I: \displaystyle -x+5 > 0 \hspace{1.0cm} \& \hspace{1.0cm} x-2 < 0

\displaystyle \Rightarrow x < 5 \hspace{1.0cm} \&  \hspace{1.0cm} x < 2

\displaystyle \Rightarrow x < 2

Case II: \displaystyle -x+5 < 0 \hspace{1.0cm} \& \hspace{1.0cm} x-2 > 0

\displaystyle \Rightarrow x > 5 \hspace{1.0cm} \&  \hspace{1.0cm} x > 2

\displaystyle \Rightarrow x > 5

\displaystyle \text{Therefore the solution set for the inequation is } ( - \infty, 2 ) \cup ( 5, \infty)

\displaystyle \\

\displaystyle \text{Question 22: } \frac{1}{x-1} \leq 2

Answer:

\displaystyle \frac{1}{x-1} \leq 2

\displaystyle \Rightarrow \frac{1}{x-1} - 2 \leq 0 \ \ \Rightarrow \frac{1-2x+2}{x-1} \leq 0 \ \ \Rightarrow \frac{-2x+3}{x-1} \leq 0

Case I: \displaystyle -2x+3 \geq 0 \hspace{1.0cm} \& \hspace{1.0cm} x-1 < 0

\displaystyle \Rightarrow x \leq \frac{3}{2} \hspace{1.0cm} \&  \hspace{1.0cm} x < 1

\displaystyle \Rightarrow x < 1

Case II: \displaystyle -2x+3 \leq 0 \hspace{1.0cm} \& \hspace{1.0cm} x-1 > 0

\displaystyle \Rightarrow x \geq \frac{3}{2} \hspace{1.0cm} \&  \hspace{1.0cm} x > 1

\displaystyle \Rightarrow x \geq \frac{3}{2}  

\displaystyle \text{Therefore the solution set for the inequation is } ( - \infty, 1 ) \cup \Big[ \frac{3}{2} , \infty \Big)

\displaystyle \\

\displaystyle \text{Question 23: } \frac{4x+3}{2x-5} < 6

Answer:

\displaystyle \frac{4x+3}{2x-5} < 6

\displaystyle \Rightarrow \frac{4x+3}{2x-5} - 6 < 0 \ \ \Rightarrow \frac{4x+3-12x+30}{2x-5} < 0 \ \ \Rightarrow \frac{-8x+33}{2x-5} < 0 \ \ \Rightarrow \frac{8x-33}{2x-5} > 0

Case I: \displaystyle 8x-33 < 0 \hspace{1.0cm} \& \hspace{1.0cm} 2x-5 < 0

\displaystyle \Rightarrow x < \frac{33}{8} \hspace{1.0cm} \&  \hspace{1.0cm} x < \frac{5}{2}  

\displaystyle \Rightarrow x < \frac{5}{2}  

Case II: \displaystyle 8x-33 > 0 \hspace{1.0cm} \& \hspace{1.0cm} 2x-5 > 0

\displaystyle \Rightarrow x > \frac{33}{8} \hspace{1.0cm} \&  \hspace{1.0cm} x > \frac{5}{2}  

\displaystyle \Rightarrow x > \frac{33}{8}  

\displaystyle \text{Therefore the solution set for the inequation is } \Big( - \infty, \frac{5}{2} \Big) \cup \Big( \frac{33}{8} , \infty \Big)

\displaystyle \\

\displaystyle \text{Question 24: } \frac{5x-6}{x+6} < 1

Answer:

\displaystyle \frac{5x-6}{x+6} < 1

\displaystyle \Rightarrow \frac{5x-6}{x+6} - 1 < 0 \ \ \Rightarrow \frac{5x-6-x-6}{x+6} < 0 \ \ \Rightarrow \frac{4x-12}{x+6} < 0

Case I: \displaystyle 4x-12 < 0 \hspace{1.0cm} \& \hspace{1.0cm} x+6 > 0

\displaystyle \Rightarrow x < 3 \hspace{1.0cm} \&  \hspace{1.0cm} x > -6

Case II: \displaystyle 4x-12 > 0 \hspace{1.0cm} \& \hspace{1.0cm} x+6 < 0

\displaystyle \Rightarrow x > 3 \hspace{1.0cm} \&  \hspace{1.0cm} x < -6

This is not possible.

\displaystyle \text{Therefore the solution set for the inequation is } ( -6, 3 )

\displaystyle \\

\displaystyle \text{Question 25: } \frac{5x+8}{4-x} < 2

Answer:

\displaystyle \frac{5x+8}{4-x} < 2

\displaystyle \Rightarrow \frac{5x+8}{4-x} - 2 < 0 \ \ \Rightarrow \frac{5x+8-8+2x}{4-x} < 0 \ \ \Rightarrow \frac{7x}{4-x} < 0

Case I: \displaystyle 7x > 0 \hspace{1.0cm} \& \hspace{1.0cm} 4-x < 0

\displaystyle \Rightarrow x > 0 \hspace{1.0cm} \&  \hspace{1.0cm} x > 4

\displaystyle \Rightarrow x > 4

Case II: \displaystyle 7x < 0 \hspace{1.0cm} \& \hspace{1.0cm} 4-x > 0

\displaystyle \Rightarrow x < 0 \hspace{1.0cm} \&  \hspace{1.0cm} x < 4

\displaystyle \Rightarrow x < 0

\displaystyle \text{Therefore the solution set for the inequation is } ( - \infty, 0 ) \cup ( 4, \infty)

\displaystyle \\

\displaystyle \text{Question 26: } \frac{x-1}{x+3} > 2

Answer:

\displaystyle \frac{x-1}{x+3} > 2

\displaystyle \Rightarrow \frac{x-1}{x+3} - 2 > 0 \ \ \Rightarrow \frac{x-1-2x-6}{x+3} > 0 \ \ \Rightarrow \frac{-x-7}{x+3} > 0

Case I: \displaystyle -(x+7) > 0 \hspace{1.0cm} \& \hspace{1.0cm} x+3 > 0

\displaystyle \Rightarrow x < -7 \hspace{1.0cm} \&  \hspace{1.0cm} x > -3

This is not possible.

Case II: \displaystyle -(x+7) < 0 \hspace{1.0cm} \& \hspace{1.0cm} x+3 < 0

\displaystyle \Rightarrow x > -7 \hspace{1.0cm} \&  \hspace{1.0cm} x < -3

\displaystyle \text{Therefore the solution set for the inequation is } ( - 7, -3 )

\displaystyle \\

\displaystyle \text{Question 27: } \frac{7x-5}{8x+3} > 4

Answer:

\displaystyle \frac{7x-5}{8x+3} > 4

\displaystyle \Rightarrow \frac{7x-5}{8x+3} - 4 > 0 \ \ \Rightarrow \frac{7x-5-32x-12}{8x+3} > 0 \ \ \Rightarrow \frac{-25x-17}{8x+3} > 0

Case I: \displaystyle -(25x+17) > 0 \hspace{1.0cm} \& \hspace{1.0cm} 8x+3 > 0

\displaystyle \Rightarrow x < \frac{-17}{25} \hspace{1.0cm} \&  \hspace{1.0cm} x > \frac{-3}{8}  

This is not possible.

Case II: \displaystyle -(25x+17) < 0 \hspace{1.0cm} \& \hspace{1.0cm} 8x+3 < 0

\displaystyle \Rightarrow x > \frac{-17}{25} \hspace{1.0cm} \&  \hspace{1.0cm} x < \frac{-3}{8}  

\displaystyle \text{Therefore the solution set for the inequation is } \Big( \frac{-17}{25} , \frac{-3}{8} \Big)

\displaystyle \\

\displaystyle \text{Question 28: } \frac{x}{x-5} > \frac{1}{2}  

Answer:

\displaystyle \frac{x}{x-5} > \frac{1}{2}  

\displaystyle \Rightarrow \frac{x}{x-5} - \frac{1}{2} > 0 \ \ \Rightarrow \frac{2x-x+5}{2x-10} > 0 \ \ \Rightarrow \frac{x+5}{2x-10} > 0

Case I: \displaystyle x+5 > 0 \hspace{1.0cm} \& \hspace{1.0cm} 2x-7 > 0

\displaystyle \Rightarrow x > -5 \hspace{1.0cm} \&  \hspace{1.0cm} x > 5

\displaystyle \Rightarrow x > 5

Case II: \displaystyle x+5 < 0 \hspace{1.0cm} \& \hspace{1.0cm} 2x-10 < 0

\displaystyle \Rightarrow x < -5 \hspace{1.0cm} \&  \hspace{1.0cm} x < 5

\displaystyle \Rightarrow x < -5

\displaystyle \text{Therefore the solution set for the inequation is } ( - \infty, -5 ) \cup ( 5, \infty)