Question 1: Evaluate each of the following: 

\displaystyle \text{i) } ^8P_3 \hspace{1.0cm} \text{ii) } ^{10}P_4 \hspace{1.0cm} \text{iii) } ^6P_6 \hspace{1.0cm} \text{iv) } P(6, 4)

Answer:

\displaystyle \text{We know, } ^nP_r = \frac{n!}{(n-r)!}  

\displaystyle \text{i) } ^8P_3 = \frac{8!}{(8-3)!} = \frac{8!}{5!} = \frac{8 \times 7 \times 6 \times 5!}{5!} = 8 \times 7 \times 6 = 336

\displaystyle \text{ii) } ^{10}P_4 = \frac{10!}{(10-4)!} = \frac{10!}{6!} = \frac{10 \times 9 \times 8 \times 7 \times 6!}{6!} = 10 \times 9 \times 8 \times 7 = 5040

\displaystyle \text{iii) } ^6P_6 = \frac{6!}{(6-6)!} = \frac{6!}{0!} = 6! = 720

\displaystyle \text{iv) } P(6, 4) = ^6P_4 = \frac{6!}{(6-4)!} = \frac{6!}{2!} = \frac{6 \times 5 \times 4 \times 3 \times 2!}{2!} = 6 \times 5 \times 4 \times 3 = 360

\displaystyle \\

Question 2: If \displaystyle P (5, r) = P (6, r - 1) , \text{ find } r

Answer:

\displaystyle P (5, r) = P (6, r - 1)

\displaystyle \Rightarrow \frac{5!}{(5-r)!} = \frac{6!}{(6-r+1)!}  

\displaystyle \Rightarrow \frac{5!}{(5-r)!} = \frac{6 \times 5!}{(7-r)!}  

\displaystyle \Rightarrow \frac{5!}{(5-r)!} = \frac{6 \times 5!}{(7-r)(6-r)(5-r)!}  

\displaystyle \Rightarrow \frac{1}{1} = \frac{6 }{(7-r)(6-r)}  

\displaystyle \Rightarrow (7-r)(6-r) = 6

\displaystyle \Rightarrow 42 - 6r - 7 r + r^2 = 6

\displaystyle \Rightarrow r^2 - 13 r + 36 = 0

\displaystyle \Rightarrow ( r-9)(r-4) = 0

\displaystyle \Rightarrow r = 9 \text{ or } r = 4

Since \displaystyle \Rightarrow r \leq n, \therefore r \neq 9

\displaystyle \text{Hence } \Rightarrow r = 4

\displaystyle \\

Question 3: If \displaystyle 5 P(4, n) = 6 \cdot P (5, n - 1) , \text{ find } n

Answer:

\displaystyle 5 P(4, n) = 6 \cdot P (5, n - 1)

\displaystyle \Rightarrow 5 \cdot ^4P_n = 6 \cdot ^5P_{n-1}

\displaystyle \Rightarrow 5 \cdot \frac{4!}{(4-n)!} = 6 \cdot \frac{5!}{(5-n+1)!}  

\displaystyle \Rightarrow \frac{1}{(4-n)!} = \frac{6}{(6-n)!}  

\displaystyle \Rightarrow \frac{1}{(4-n)!} = \frac{6}{(6-n)(5-n)(4-n)!}  

\displaystyle \Rightarrow (6-n)(5-n) = 6

\displaystyle \Rightarrow (6-n)(5-n) = 3 \times 2

Comparing LHS and RHS we get

\displaystyle 6 - n = 3 \Rightarrow n = 3

\displaystyle 5-n = 2 \Rightarrow n = 3

\displaystyle \text{Hence } n = 3

\displaystyle \\

Question 4: If \displaystyle P (n,5) =20 \cdot P(n, 3) , \text{ find } n

Answer:

\displaystyle P (n,5) =20 \cdot P(n, 3)

\displaystyle \Rightarrow ^nP_5 = 20 \cdot ^nP_3

\displaystyle \Rightarrow \frac{n!}{(n-5)!} = 20 \cdot \frac{n!}{(n-3)!}  

\displaystyle \Rightarrow \frac{1}{(n-5)!} = \frac{20}{(n-3)(n-4)(n-5)!}  

\displaystyle \Rightarrow (n-3)(n-4) = 20

\displaystyle \Rightarrow (n-3)(n-4) = 5 \times 4

Comparing LHS and RHS we get

\displaystyle n-3 = 5 \Rightarrow n = 8

\displaystyle n-4 = 4 \Rightarrow n = 8

\displaystyle \text{Hence } n = 8

\displaystyle \\

Question 5: If \displaystyle ^nP_4 = 360 , find the value of \displaystyle n .

Answer:

\displaystyle ^nP_4 = 360

\displaystyle \Rightarrow \frac{n!}{(n-4)!} = 360

\displaystyle \Rightarrow n(n-1)(n-2)(n-3) = 360

\displaystyle \Rightarrow n(n-1)(n-2)(n-3) = 6 \times 5 \times 4 \times 3

Comparing LHS and RHS we get

\displaystyle n = 6

\displaystyle n-1 = 5 \Rightarrow n = 6

\displaystyle n-2 = 4 \Rightarrow n = 6

\displaystyle n-3 = 3 \Rightarrow n = 6

\displaystyle \text{Hence } n = 6

\displaystyle \\

Question 6: If \displaystyle P (9, r) = 360 , find \displaystyle r

Answer:

\displaystyle P (9, r) = 360

\displaystyle \Rightarrow ^9P_r = 360

\displaystyle \Rightarrow \frac{9!}{(9-r)!} = 360

\displaystyle \Rightarrow \frac{9!}{(9-r)!} = 9 \times 8 \times 7 \times 6

\displaystyle \Rightarrow \frac{9!}{(9-r)!} = \frac{9!}{5!}  

\displaystyle \Rightarrow 9-r = 5

\displaystyle \Rightarrow r = 4

\displaystyle \\

Question 7: If \displaystyle P(11, r) = P (12, r - 1) , \text{ find } r

Answer:

\displaystyle P(11, r) = P (12, r - 1)

\displaystyle \Rightarrow \frac{11!}{(11-r)!} = \frac{12!}{(12-r+1)!}  

\displaystyle \Rightarrow \frac{1}{(11-r)!} = \frac{12}{(13-r)!}  

\displaystyle \Rightarrow \frac{1}{(11-r)!} = \frac{12}{(13-r)(12-r)(11-r)!}  

\displaystyle \Rightarrow (13-r)(12-r) = 12

\displaystyle \Rightarrow (13-r)(12-r) = 4 \times 3

Comparing LHS and RHS we get

\displaystyle 13-r = 4 \Rightarrow r = 9

\displaystyle 12 - r = 3 \Rightarrow r = 9

\displaystyle \therefore r = 9

\displaystyle \\

Question 8: If \displaystyle P (n, 4) =12 \cdot P (n,2) , \text{ find } n

Answer:

\displaystyle P (n, 4) =12 \cdot P (n,2)

\displaystyle \Rightarrow \frac{n!}{(n-4)!} = 12 \cdot \frac{n!}{(n-2)!}  

\displaystyle \Rightarrow \frac{1}{(n-4)!} = \frac{12}{(n-2)(n-3)(n-4))!}  

\displaystyle \Rightarrow (n-2)(n-3) = 12

\displaystyle \Rightarrow (n-2)(n-3) = 4 \times 3

Comparing LHS and RHS we get

\displaystyle n-2 = 4 \Rightarrow n = 6

\displaystyle n-3 = 3 \Rightarrow n=6

\displaystyle \therefore n = 6

\displaystyle \\

Question 9: If \displaystyle P (n -1, 3) : P (n, 4) =1 :9 , \text{ find } n

Answer:

\displaystyle P (n -1, 3) : P (n, 4) =1 :9

\displaystyle \Rightarrow \frac{(n-1)!}{(n-1-3)!} : \frac{(n)!}{(n-4)!} = 1 : 9

\displaystyle \Rightarrow \frac{(n-1)!}{(n-1-3)!} \times \frac{(n-4)!}{(n)!} = \frac{1}{9}  

\displaystyle \Rightarrow \frac{1}{n-1} = \frac{1}{9}  

\displaystyle \Rightarrow 9 = n - 1

\displaystyle \Rightarrow n = 10

\displaystyle \\

Question 10: If \displaystyle P (2n -1, n): P (2n +1, n -1) = 22:7 , \text{ find } n

Answer:

\displaystyle P (2n -1, n): P (2n +1, n -1) = 22:7

\displaystyle \Rightarrow \frac{(2n-1)!}{(2n-1-n)!} : \frac{(2n+1)!}{(2n+1-n+1)! } = 22: 7

\displaystyle \Rightarrow \frac{(2n-1)!}{(n-1)!} : \frac{(2n+1)!}{(n+2)! } = 22: 7

\displaystyle \Rightarrow \frac{(2n-1)!}{(n-1)!} \times \frac{(n+2)! }{(2n+1)!} = \frac{22}{7}  

\displaystyle \Rightarrow \frac{(2n-1)!}{(n-1)!} \times \frac{(n+2)(n+1)(n)(n-1)! }{(2n+1)(2n)(2n-1)!} = \frac{22}{7}  

\displaystyle \Rightarrow \frac{(n+2)(n+1)(n)}{(2n+1)(2n)} = \frac{22}{7}  

\displaystyle \Rightarrow 7 ( n+2)(n+1) = 44 ( 2n+1)

\displaystyle \Rightarrow 7n^2 + 14n + 7n + 14 = 88n +44

\displaystyle \Rightarrow 7n^2 + 21 n + 14 = 88 n + 44

\displaystyle \Rightarrow 7n^2 - 67n - 30 =0

\displaystyle \Rightarrow (n-10)(7n+3) = 0

\displaystyle \Rightarrow n = 10 \text{ or } n = \frac{-3}{7} (this is not possible)

\displaystyle \Rightarrow \therefore n = 10

\displaystyle \\

Question 11: If \displaystyle P (n, 5):P (n,3)= 2:1 , find \displaystyle n .

Answer:

\displaystyle P (n, 5):P (n,3) = 2:1

\displaystyle \Rightarrow \frac{n!}{(n-5)!} : \frac{n!}{(n-3)!} = 2:1

\displaystyle \Rightarrow \frac{n!}{(n-5)!} \times \frac{(n-3)!}{n!} = \frac{2}{1}  

\displaystyle \Rightarrow \frac{(n-3)(n-4)(n-5)!}{(n-5)!} = 2

\displaystyle \Rightarrow (n-3)(n-4) = 2

\displaystyle \Rightarrow n^2 - 7n + 12 = 2

\displaystyle \Rightarrow n^2 - 7n + 10 = 0

\displaystyle \Rightarrow (n-5)(n-2) = 0

\displaystyle \Rightarrow n = 5 \text{ or } n = 2 ( not possible as \displaystyle n cannot be letter than 3)

\displaystyle \therefore n = 5

\displaystyle \\

Question 12: Prove that: \displaystyle 1 \cdot P (1, 1) + 2 \cdot P (2, 2) + 3 \cdot P ( 3, 3) +\ldots + n \cdot P (n, n) = P (n + 1, n + 1) - 1

Answer:

LHS \displaystyle = 1 \cdot P (1, 1) + 2 \cdot P (2, 2) + 3 \cdot P ( 3, 3) +\ldots + n \cdot P (n, n)

\displaystyle = 1 \cdot ^1P_1 + 2 \cdot ^2P_2 + 3 \cdot ^3P_3 +\ldots + n \cdot ^nP_n

\displaystyle = 1 \cdot \frac{1!}{(1-1)!} + 2 \cdot \frac{2!}{(2-2)!} + 3 \cdot \frac{3!}{(3-3)!} +\ldots + n \cdot \frac{n!}{(n-n)!}  

\displaystyle = 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! +\ldots + n \cdot n!

\displaystyle = \sum \limits_{r=1}^{n} r \cdot r!

\displaystyle = \sum \limits_{r=1}^{n} [(r+1)-1] \cdot r!

\displaystyle = \sum \limits_{r=1}^{n} [(r+1)! - r! ]

\displaystyle = [ ( 2! - 1!) + ( 3! - 2!) + \ldots + [(n+1)! - n!]

\displaystyle = ( n + 1 )! - 1!

\displaystyle = ( n + 1 )! - 1 = RHS. Hence proved.

\displaystyle \\

Question 13: If \displaystyle P (15, r -1) : P (16, r - 2) = 3 : 4 , find \displaystyle r

Answer:

\displaystyle P (15, r -1) : P (16, r - 2) = 3 : 4

\displaystyle \Rightarrow ^{15}P_{r-1} : ^{16}P_{r-2} = 3:4

\displaystyle \Rightarrow \frac{15!}{(15-r+1)!} : \frac{16!}{(16-r+2)!} = 3:4

\displaystyle \Rightarrow \frac{15!}{(15-r+1)!} \times \frac{(18-r)!}{16!} = \frac{3}{4}  

\displaystyle \Rightarrow \frac{1}{(16-r)!} \times \frac{(18-r)(17-r)(16-r)!}{16!} = \frac{3}{4}  

\displaystyle \Rightarrow (18-r)(17-r) = 12

\displaystyle \Rightarrow (18-r)(17-r) = 4 \times 3

Comparing LHS with RHS, we get

\displaystyle 18-r = 4 \Rightarrow r = 14

\displaystyle 17-r = 3 \Rightarrow r = 14

\displaystyle \therefore r = 14

\displaystyle \\

Question 14: If \displaystyle ^{n+5}P_{n+1} = \Big[ \frac{11(n-1)}{2} \Big] ^{n+3}P_n , find \displaystyle n

Answer:

\displaystyle ^{n+5}P_{n+1} = \Big[ \frac{11(n-1)}{2} \Big] ^{n+3}P_n

\displaystyle \Rightarrow \frac{(n+5)!}{(n+5-n-1)!} = \Big[ \frac{11(n-1)}{2} \Big] \frac{(n+3)!}{(n+3-n)!}  

\displaystyle \Rightarrow \frac{(n+5)(n+4)(n+3)!}{4!} = \Big[ \frac{11(n-1)}{2} \Big] \frac{(n+3)!}{3!}  

\displaystyle \Rightarrow \frac{(n+5)(n+4)}{4} = \frac{11(n-1)}{2}  

\displaystyle \Rightarrow (n+5)(n+4) = 22 ( n-1)

\displaystyle \Rightarrow n^2 - 13n + 42 = 0

\displaystyle \Rightarrow (n-7)(n-6) = 0

\displaystyle \Rightarrow n = 7 \text{ or } n = 6

\displaystyle \\

Question 15: In how many ways can five children stand in a queue?

Answer:

We need to permute \displaystyle 5 children out of \displaystyle 5 .

\displaystyle \text{Therefore the required number of ways } = ^5P_5 = \frac{5!}{(5-5)!} = 5! = 120

\displaystyle \\

Question 16: From among the \displaystyle 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?

Answer:

We need to permute \displaystyle 2 teachers out of \displaystyle 36 .

\displaystyle \text{Therefore the required number of ways } = ^{36}P_2 = \frac{36!}{(36-2)!} = 36 \times 35 = 1260

\displaystyle \\

Question 17: Four letters \displaystyle \text{E, K, S} and \displaystyle \text{ V } , one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?

Answer:

We need to permute \displaystyle 2 letters out of \displaystyle 4 .

\displaystyle \text{Therefore the required number of ways } = ^4P_2 = \frac{4!}{(4-2)!} = 4 \times 3 = 12

\displaystyle \\

Question 18: Four books, one each in Chemistry, Physics, Biology, and Mathematics, are to be arranged on a shelf. In how many ways can this be done?

Answer:

We need to permute \displaystyle 4 books out of \displaystyle 4 .

\displaystyle \text{Therefore the required number of ways } = ^4P_4 = \frac{4!}{(4-4)!} = 4! = 24

\displaystyle \\

Question 19: Find the number of different \displaystyle 4- letter words, with or without meanings, that can be formed from the letters of the word \displaystyle \text{ 'NUMBER'} .

Answer:

We need to permute \displaystyle 4 letters out of \displaystyle 6 .

\displaystyle \text{Therefore the required number of ways } = ^6P_4 = \frac{6!}{(6-4)!} = 6 \times 5 \times 4 \times 3 = 360

\displaystyle \\

Question 20: How many three-digit numbers are there, with distinct digits, with each digit odd?

Answer:

The odd digits are \displaystyle 1, 3, 5, 7, 9

We need to permute \displaystyle 3 digits out of \displaystyle 5 .

\displaystyle \text{Therefore the required number of ways } = ^5P_3 = \frac{5!}{(5-3)!} = 5 \times 4 \times 3 = 60

\displaystyle \\

Question 21: How many words, with or without meaning, can be formed by using all the letters of the word \displaystyle \text{'DELHI'} , using each letter exactly once?

Answer:

Number of letters in \displaystyle \text{DELHI} are \displaystyle 5

We need to permute \displaystyle 5 letters out of \displaystyle 5 .

\displaystyle \text{Therefore the required number of ways } = ^5P_5 = \frac{5!}{(5-5)!} = 5! = 120

\displaystyle \\

Question 22: How, many words, with or without meaning, can be formed by using the letters of the word \displaystyle \text{'TRIANGLE'} ?

Answer:

Number of letters in \displaystyle \text{TRIANGLE} are \displaystyle 8

We need to permute \displaystyle 8 letters out of \displaystyle 8 .

\displaystyle \text{Therefore the required number of ways } = ^8P_8 = \frac{8!}{(8-8)!} = 8!

\displaystyle \\

Question 23: There are two works each of \displaystyle 3 volumes and two works each of \displaystyle 2 volumes; In how many ways can the \displaystyle 10 books be placed on a shelf so that the volumes of the same work are not separated?

Answer:

There are 4 different types of works.

Number of ways in which these \displaystyle 4 works can be arranged \displaystyle = ^4P_4 = 4!

Within the works, the volumes can be arranged.

Therefore the total number of ways arrangement can be made \displaystyle = 4! \times ( 3! \times 3!) \times ( 2! \times 2!) = 3456 .

\displaystyle \\

Question 24: There are \displaystyle 6 items in column \displaystyle A and \displaystyle 6 items in column \displaystyle B . A student is asked to match each item in column \displaystyle A with an item in column \displaystyle B . How many possible, correct or incorrect, answers are there to this question?

Answer:

There are \displaystyle 6 items in column \displaystyle A and \displaystyle 6 items in column \displaystyle B .

The first item from column \displaystyle A can be matched with any of the \displaystyle 6 items from column \displaystyle B .

Similarly, once the first items from column \displaystyle A has been matched, the 2nd item from the column \displaystyle A can only be matched with \displaystyle 5 items of the column \displaystyle B . and so on….

Hence the number of ways the match can be done \displaystyle = ^6P_6 = 6! = 720

The other way to look at this is to keep column \displaystyle A fixed and arrange 6 items from column \displaystyle B which would be \displaystyle ^6P_6 = 6! = 720

\displaystyle \\

Question 25: How many three-digit numbers are there, with no digit repeated?

Answer:

\displaystyle \text{Total number of 3 digit number }  = ^{10}P_3 = \frac{10!}{(10-3)!} = \frac{10!}{7!} = 10 \times 9 \times 8 = 720

Total number of 3 digit numbers starting with \displaystyle 0 = ^9P_2 = \frac{9!}{(9-2)!} = \frac{9!}{7!} = 9 \times 8 = 72

Hence the three-digit numbers are there, with no digit repeated \displaystyle = 720 - 72 = 648

\displaystyle \\

Question 26: How many \displaystyle 6- digit telephone numbers can be constructed with digits \displaystyle 0,1,2,3,4,5,6,7,8,9 if each number starts with \displaystyle 35 and no digit appears more than once?

Answer:

In total there are \displaystyle 10 digits to chose from.

However, the first two digits are already fixed to \displaystyle 35 .

Therefore we can now chose \displaystyle 4 numbers from \displaystyle 8 in

\displaystyle = ^8P_4 = \frac{8!}{4!} = 8 \times 7 \times 6 \times 5 = 1680 ways.

Therefore \displaystyle 1680 , \displaystyle 6- digit telephone numbers can be constructed with digits \displaystyle 0,1,2,3,4,5,6,7,8,9 if each number starts with \displaystyle 35 and no digit appears more than once.

\displaystyle \\

Question 27: In how many ways can \displaystyle 6 boys and \displaystyle 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row, and the boys are to stand in a row behind them?

Answer:

Number of ways you can arrange the girls \displaystyle = 5!

Number of ways you can arrange the boys \displaystyle = 6!

Hence the total number of arrangements \displaystyle = 5! \times 6! = 86400

\displaystyle \\

Question 28: If \displaystyle a denotes the number of permutations of \displaystyle (x + 2) things taken all at a time, \displaystyle b the number of permutations of \displaystyle x things taken \displaystyle 11 at a time and \displaystyle c the number of permutations of \displaystyle x - 11 things taken all at a time such that \displaystyle a = 182 bc , find the value of \displaystyle x .

Answer:

\displaystyle a = ^{x+2}P_{x+2} = \frac{(x+2)!}{x+2 - x - 2} = (x+2)!

\displaystyle b = ^{x}P_{11} = \frac{x!}{(x-11)!}  

\displaystyle c = ^{x-11}P_{x-11 - x + 11} = \frac{(x-11)!}{x-11-x+11} = (x-11)!

Given \displaystyle a = 182 bc

\displaystyle \Rightarrow (x+2)! = 182 \cdot \frac{x!}{x-11} \cdot (x-11)!

\displaystyle \Rightarrow (x+2)! = 182 \cdot x!

\displaystyle \Rightarrow (x+2)(x+1) x! = 182 \cdot x!

\displaystyle \Rightarrow (x+2)(x+1) = 182

\displaystyle \Rightarrow (x+2)(x+1) = 14 \times 13

Comparing LHS with RHS we get

\displaystyle x+2 = 14 \Rightarrow x = 12

\displaystyle x+ 1 = 13 \Rightarrow x = 12

\displaystyle \therefore x = 12

\displaystyle \\

Question 29: How many \displaystyle 3- digit numbers can be formed by using the digits \displaystyle 1 to \displaystyle 9 if no digit is repeated?

Answer:

The total number of 3 digit number that can be formed \displaystyle = ^9P_3 = \frac{9!}{6!} = 9 \times 8 \times 7 = 504

\displaystyle \\

Question 30: How many 3-digit even numbers can be made using the digits \displaystyle 1,2,3,4, 5,6,7 if no digits is repeated?

Answer:

The even digits are 2, 4, 6

\displaystyle \text{ The number of 3-digit numbers when the last digit is }  2 = ^6P_2 = \frac{6!}{4!} = 6 \times 5 = 30

\displaystyle \text{ The number of 3-digit numbers when the last digit is }  4 = ^6P_2 = \frac{6!}{4!} = 6 \times 5 = 30

\displaystyle \text{ The number of 3-digit numbers when the last digit is }  6 = ^6P_2 = \frac{6!}{4!} = 6 \times 5 = 30

Hence the total number of 3 digit even numbers that can be formed \displaystyle = 30 + 30 + 30 = 90

\displaystyle \\

Question 31: Find the numbers of \displaystyle 4- digit numbers that can be formed using the digits \displaystyle 1, 2,3,4,5 if no digit is repeated? How many of these will be even?

Answer:

The number of 4 digit numbers that can be formed \displaystyle = ^5P_4 = \frac{5!}{1!} = 5 \times 4 \times 3 \times 2 = 120

The even digits are \displaystyle 2, 4

\displaystyle \text{ The number of 4-digit numbers when the last digit is }  2 = ^4P_3 = \frac{4!}{1!} = 24

\displaystyle \text{ The number of 4-digit numbers when the last digit is }  4 = ^4P_3 = \frac{4!}{1!} = 24

Therefore the total number of even numbers \displaystyle = 24 + 24 = 48

\displaystyle \\

Question 32: All the letters of the word \displaystyle \text{'EAMCOT'} are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.

Answer:

Number of consonants \displaystyle = 3 \text{( M, C, T)}

Number of vowels \displaystyle = 3 \text{( E, A, O)}

No two vowels can be together.

\displaystyle \text{Number of ways the vowels can be arranged }  = ^4P_3 = \frac{4!}{1} = 24

\displaystyle \text{Number of ways consonants can be arranged }  = 3P_3 = 3! = 6

Hence the total number of arrangements in which no two vowels are adjacent to each other \displaystyle = 24 \times 6 = 144