Question 1: Find: 

\displaystyle \text{i) } {10}^{th} \text{ term of A.P. } 1, 4, 7, 10, \ldots \displaystyle \text{ii) } {18}^{th} \text{ term of A.P. } \sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, \ldots

\displaystyle \text{iii) } n^{th} \text{ term of A.P. } 13, 8, 3, -2, \ldots

Answer:

\displaystyle \text{i) } \text{Given A.P. series } 1, 4, 7, 10, \ldots

\displaystyle \text{Therefore } a = 1

\displaystyle \text{Common difference } (d) = 4-1 = 3

\displaystyle \text{We know, } a_n = a + (n-1) d

\displaystyle \therefore a_{10} = 1+ ( 10 - 1) (3) = 1 + 27 = 28

\displaystyle \text{ii) } \text{Given A.P. series } \sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, \ldots

\displaystyle \text{Therefore } a = \sqrt{2}

\displaystyle \text{Common difference } (d) = 3\sqrt{2} - \sqrt{2} = 2\sqrt{2}

\displaystyle \text{We know, } a_n = a + (n-1) d

\displaystyle \therefore a_{18} = \sqrt{2} + ( 18 - 1) (2\sqrt{2}) = \sqrt{2} + 34\sqrt{2} = 35\sqrt{2}

\displaystyle \text{iii) } \text{Given A.P. series } 13, 8, 3, -2, \ldots

\displaystyle \text{Therefore } a = 13

\displaystyle \text{Common difference } (d) = 8-13 = -5

\displaystyle \text{We know, } a_n = a + (n-1) d

\displaystyle \therefore a_{n} = 13+ ( n - 1) (-5) = -5n+18

\displaystyle \\

Question 2: In an A.P., show that \displaystyle a_{m + n} + a_{m - n} = 2a_m .

Answer:

Let the first term be \displaystyle a and the common difference be \displaystyle d

\displaystyle \text{LHS } = a_{m + n} + a_{m - n}

\displaystyle = [a+ (m+n-1)d ] + [a+(m-n-1)d ]

\displaystyle = 2a + ( m+n-1+m-n-1)d

\displaystyle = 2a + 2 (m-1) d

\displaystyle = 2 [ a+ ( m-1)d ]

\displaystyle = 2 a_m \text{ Hence proved. }

\displaystyle \\

Question 3:

\displaystyle \text{i) Which term of the A.P. } 3, 8, 13, \ldots \text{ is } 248 ?  

\displaystyle \text{ii) Which term of the A.P. } 84, 80,76, \ldots \text{ is } 0 ?  

\displaystyle \text{iii) Which term of the A.P. } 4, 9,14, \ldots \text{ is } 254 ?  

Answer:

\displaystyle \text{i) } \text{Given A.P. series } 3, 8, 13, \ldots \text{ is } 248 ?

\displaystyle \Rightarrow a = 3 d = (8-3) = 5 a_n = 248

\displaystyle \text{We know } a_n = a + (n-1) d

\displaystyle \Rightarrow 248 = 3 + (n-1)(5)

\displaystyle \Rightarrow 49 = n - 1

\displaystyle \Rightarrow n = 50

 \displaystyle \text{Hence } 248 is the \displaystyle 50^{th} term.

\displaystyle \text{ii) } \text{Given A.P. series } 84, 80,76, \ldots \text{ is } 0 ?

\displaystyle \Rightarrow a = 84 d = (80 - 84) = -4 a_n = 0

\displaystyle \text{We know } a_n = a + (n-1) d

\displaystyle \Rightarrow 0 = 84 + (n-1)(-4)

\displaystyle \Rightarrow 21 = n - 1

\displaystyle \Rightarrow n = 22

 \displaystyle \text{Hence } 0 is the \displaystyle 22^{nd} term.

\displaystyle \text{iii) } \text{Given A.P. series } 4, 9,14, \ldots \text{ is } 254 ?

\displaystyle \Rightarrow a = 4 d = (9-4) = 5 a_n = 254

\displaystyle \text{We know } a_n = a + (n-1) d

\displaystyle \Rightarrow 254 = 4 + (n-1)(5)

\displaystyle \Rightarrow 50 = n - 1

\displaystyle \Rightarrow n = 51

 \displaystyle \text{Hence } 254 is the \displaystyle 51^{st} term.

\displaystyle \\

Question 4:

(i) Is \displaystyle 58 a term of the A.P. \displaystyle 7,10,13, \ldots ?

(ii) Is \displaystyle 302 a term of the A.P. \displaystyle 3,8,13, \ldots ?

Answer:

\displaystyle \text{i) } \text{Given A.P. series } 7,10,13, \ldots ?

\displaystyle \Rightarrow a = 7 d = (10-7) = 3 a_n = 68

\displaystyle \text{We know } a_n = a + (n-1) d

\displaystyle \Rightarrow 68 = 7 + (n-1)(3)

\displaystyle \Rightarrow \frac{61}{3} = n - 1

\displaystyle \Rightarrow n = \frac{61}{3} + 1

Since \displaystyle n is not a natural number, \displaystyle 68 is NOT a term in the given A.P.

\displaystyle \text{ii) } \text{Given A.P. series } 3,8,13, \ldots ?

\displaystyle \Rightarrow a = 3 d = (8-3) = 5 a_n = 302

\displaystyle \text{We know } a_n = a + (n-1) d

\displaystyle \Rightarrow 302 = 3 + (n-1)(5)

\displaystyle \Rightarrow \frac{299}{5} = n - 1

\displaystyle \Rightarrow n = \frac{299}{5} + 1

Since \displaystyle n is not a natural number, \displaystyle 302 is NOT a term in the given A.P.

\displaystyle \\

Question 5:

\displaystyle \text{i) Which term of the sequence } 24, 23 \frac{1}{4} , 22 \frac{1}{2} , 21 \frac{3}{4} , \ldots \text{ is the first negative term? }

\displaystyle \text{ii) Which term of the sequence } 12+8i, 11,+6i, 10+4i , \ldots \text{ is (a) purely } \\ \\ \text{ real (b) purely imaginary ? }

Answer:

\displaystyle \text{i) } \text{Given series } 24, 23 \frac{1}{4} , 22 \frac{1}{2} , 21 \frac{3}{4} , \ldots

\displaystyle \Rightarrow a = 24 d = (23 \frac{1}{4} -24) = - \frac{3}{4}

Let the first negative term is \displaystyle a_n .

\displaystyle \text{Therefore } a_n < 0

\displaystyle \Rightarrow a + (n-1) d < 0

\displaystyle \Rightarrow 24 + (n-1) ( - \frac{3}{4} ) < 0

\displaystyle \Rightarrow 24 + \frac{3}{4} < \frac{3n}{4}

\displaystyle \Rightarrow \frac{99}{4} < \frac{3n}{4}

\displaystyle \Rightarrow 99 < 3n

\displaystyle \text{Therefore } n > 33

Thus the \displaystyle 34^{th} term is the first negative term of the given AP.

\displaystyle \text{ii) } \text{Given series } 12+8i, 11,+6i, 10+4i , \ldots

\displaystyle \Rightarrow a = 12 + 8i

\displaystyle d = ( 11+6i) - ( 12 + 8i) = -1 -2i

Let the real term be \displaystyle a_n

\displaystyle a_n = a + (n-1)d

\displaystyle = ( 12 + 8i) + ( n-1) ( -1 -2i)

\displaystyle = 12 + 8i + 1 + 2i - n - 2in

\displaystyle = ( 12 + 1 - n) + (10i - 2in)

\displaystyle = (13-n) + i ( 10-2n)

a) for \displaystyle a_n to be real, \displaystyle 10-2n = 0 \Rightarrow n = 5
b) for \displaystyle a_n to be imaginary, \displaystyle 13-n = 0 \Rightarrow n = 13

\displaystyle \\

Question 6:

\displaystyle \text{i) How many terms are there in the A.P. } 7, 10, 13, \ldots , 43 ?

\displaystyle \text{ii) How many terms are there in the A.P. } -1, \frac{-5}{6} , \frac{-2}{3} , \frac{-1}{2} , \ldots , \frac{10}{3} ?

Answer:

\displaystyle \text{i) } \text{Given A.P. series } 7, 10, 13, \ldots , 43

\displaystyle \text{Therefore } a = 7 d= ( 10 - 7) = 3 a_n = 43

\displaystyle \text{We know } a_n = a + (n-1)d

\displaystyle \Rightarrow 43 = 7 + (n-1) (3)

\displaystyle \Rightarrow 36 = (n-1) (3)

\displaystyle \Rightarrow n -1 = 12

\displaystyle \Rightarrow n = 13

Therefore there are \displaystyle 13 terms in the given A.P.

\displaystyle \text{ii) } \text{Given A.P. series } -1, \frac{-5}{6} , \frac{-2}{3} , \frac{-1}{2} , \ldots , \frac{10}{3} ?

\displaystyle \text{Therefore } a = -1 d= \Big[ \frac{-5}{6} - (-1) \Big] = \frac{1}{6} a_n = \frac{10}{3}

\displaystyle \text{We know } a_n = a + (n-1)d

\displaystyle \Rightarrow \frac{10}{3} = -1 + (n-1) ( \frac{1}{6} )

\displaystyle \Rightarrow \frac{13}{3} = (n-1) ( \frac{1}{6} )

\displaystyle \Rightarrow n -1 = 26

\displaystyle \Rightarrow n = 27

Therefore there are \displaystyle 27 terms in the given A.P.

\displaystyle \\

Question 7: The first term of an A.P. is \displaystyle 5 , the common difference is \displaystyle 3 and the last term is \displaystyle 80 ; find the number of terms.

Answer:

\displaystyle \text{Given: } a = 5 d = 3 a_n = 80

\displaystyle \text{We know } a_n = a + (n-1)d

\displaystyle \Rightarrow 80 = 5 + ( n-1) (3)

\displaystyle \Rightarrow (n-1) (3) = 75

\displaystyle \Rightarrow n-1 = 25

\displaystyle \Rightarrow n = 26

Therefore there are \displaystyle 26 terms in the given A.P.

\displaystyle \\

Question 8: The \displaystyle 6^{th} \text{ and } 17^{th} terms of an A.P. are \displaystyle 19 \text{ and } 41 respectively, find the \displaystyle 40^{th} term.

Answer:

\displaystyle \text{Given } a_6 = 19 \text{ and } a_{17} = 41

\displaystyle \text{We know } a_n = a + (n-1)d

\displaystyle \Rightarrow a + ( 6-1) d = 19

\displaystyle \Rightarrow a + 5d = 19 … … … … … i)

\displaystyle \Rightarrow a + ( 17-1) d = 41

\displaystyle \Rightarrow a + 16d = 41 … … … … … ii)

Solving i) and ii)

\displaystyle 19-5d = 41 - 16d

\displaystyle \Rightarrow 11d = 22

\displaystyle \Rightarrow d = 2

\displaystyle \text{Therefore } a = 19 - 5( 2) = 9

\displaystyle \text{Hence } 40^{th} \text{ is } a_{40} = 9 + (40-1) (2) = 87

\displaystyle \\

Question 9: If \displaystyle 9^{th} term of an A.P. is zero, prove that its \displaystyle 29^{th} term is double the \displaystyle 19^{th} term.

Answer:

\displaystyle \text{Given: } a_9 = 0

\displaystyle \therefore a + ( 9-1) d = 0

\displaystyle \Rightarrow a + 8d = 0

\displaystyle \Rightarrow a = -8d

To prove: \displaystyle a _{29} = 2 a_{19}

\displaystyle \Rightarrow a + ( 29-1) d = 2 [ a + (19-1) d]

\displaystyle \Rightarrow a + 28d = 2a + 36d

Substituting \displaystyle a = -8d

\displaystyle \Rightarrow -8d + 28d = 2 (-8d) + 36d

\displaystyle \Rightarrow 20 d = 20 d \text{ Hence proved. }

\displaystyle \\

Question 10: If \displaystyle 10 times the \displaystyle 10^{th} term of an A.P. is equal to \displaystyle 15 times the \displaystyle 15^{th} term, show that \displaystyle 25^{th} term of the A.P. is zero.

Answer:

\displaystyle \text{Given } 10a_{10} = 15 a_{15}

\displaystyle \text{We know } a_n = a + (n-1)d

\displaystyle \Rightarrow 10 [ a+ ( 10 - 1) d] = 15 [ a+ ( 15 - 1) d]

\displaystyle \Rightarrow 10 a + 90d = 15a + 210 d

\displaystyle \Rightarrow 5a + 120 d = 0

\displaystyle \Rightarrow a + 24 d = 0

\displaystyle \Rightarrow a = - 24 d

Now \displaystyle a_{25} = a + ( 25 - 1) d = -24d + 24 d = 0 \text{ Hence proved. }

\displaystyle \\

Question 11: The \displaystyle 10^{th} \text{ and } 18^{th} terms of an A.P. are \displaystyle 41 \text{ and } 73 respectively. Find \displaystyle 26^{th} term.

Answer:

\displaystyle \text{Given } a_{10} = 41 \text{ and } a_{18} = 73

\displaystyle \therefore a + ( 10 -1) D = 41

\displaystyle \Rightarrow a + 9d = 41 … … … … … i)

\displaystyle \text{Also } a + ( 18 - 1) d = 73

\displaystyle \Rightarrow a + 17d = 73 … … … … … ii)

Solving i) and ii) we get

\displaystyle 41- 9d = 73 - 17d

\displaystyle \Rightarrow 8d = 32

\displaystyle \Rightarrow d = 4

Substituting from i) we get

\displaystyle a+ 9(4) = 41 \Rightarrow a = 5

\displaystyle \text{Therefore } a_{26} = 5 + ( 26-1) (4) = 105

\displaystyle \\

Question 12: In a certain A.P. the \displaystyle 24^{th} term is twice the \displaystyle 10^{th} term. Prove that the \displaystyle 72^{nd} term is twice the \displaystyle 34^{th} term.

Answer:

\displaystyle \text{Given } a_{24} = 2a_{10}

\displaystyle \Rightarrow a + (24-1) d = 2 [ a + (10-1) d]

\displaystyle \Rightarrow a + 23 d = 2a + 18 d

\displaystyle \Rightarrow a = 5d … … … … … i)

To prove: \displaystyle a_{72} = 2 a_{34}

\displaystyle \Rightarrow a + ( 72 -1) d = 2 [ a + ( 34 - 1) d]

\displaystyle \Rightarrow a + 71 d = 2a + 66d

Substituting from i) we get

\displaystyle \Rightarrow 5d + 71 d = 2 ( 5d) + 66d

\displaystyle \Rightarrow 76d = 76 d \text{ Hence proved. }

\displaystyle \\

Question 13: lf \displaystyle (m + 1)^{th} term of an A.P. is twice the \displaystyle (n + 1)^{th} term, prove that \displaystyle (3m+ 1)^{th} term is twice the \displaystyle (m+n+1)^{th} term.

Answer:

\displaystyle \text{Given } a_{m+1} = 2a_{n+1}

\displaystyle \Rightarrow [ a + ( m+1-1) d ] = 2 [ a + (n+1-1)d]

\displaystyle \Rightarrow a + md = 2a + 2nd

\displaystyle \Rightarrow a = (m-2n) d … … … … … i)

To prove \displaystyle a_{3m+1} = 2 a_{m+n+1}

\displaystyle \Rightarrow a + (3m+1-1)d = 2 [ a + (m+n+1-1) d

\displaystyle \Rightarrow a + 3md = 2a + 2(m+n) d

Substituting from i)

\displaystyle \Rightarrow (m-2n) d + 3md = 2 [(m-2n)d] + 2(m-n)d

\displaystyle \Rightarrow 4md - 2nd = 2md - 4nd + 2md + 2nd

\displaystyle \Rightarrow 4md - 2nd = 4md - 2nd \text{ Hence proved. }

\displaystyle \\

Question 14: If the \displaystyle n^{th} term of the A.P. \displaystyle 9, 7, 5, \ldots is same as the \displaystyle n^{th} term of the A.P. \displaystyle 15, 12, 9, \ldots find \displaystyle n .

Answer:

\displaystyle n^{th} term of sequence \displaystyle 9, 7, 5, \ldots

\displaystyle \Rightarrow a = 9, d = (7-9) = -2

\displaystyle \therefore a_n = a + (n-1) d

\displaystyle = 9 + ( n-1) ( -2)

\displaystyle = 11 - 2n

\displaystyle n^{th} term of sequence \displaystyle 15, 12, 9, \ldots

\displaystyle \Rightarrow a = 15, d = (12-15) = -3

\displaystyle \therefore a_n = a + (n-1) d

\displaystyle = 15 + ( n-1) ( -3)

\displaystyle = 18 - 3n

\displaystyle \text{Given: } 11 - 2n = 18-3n \Rightarrow n = 7

\displaystyle \\

Question 15: Find the \displaystyle 12^{th} term from the end of the following arithmetic progressions: \displaystyle \text{i) } 3,5,7,9, \ldots , 201 \displaystyle \text{ii) } 3,8,13 , \ldots , 253 \displaystyle \text{iii) } 1,4,7,10, \ldots ,88

Answer:

\displaystyle \text{i) } \text{Given series } 3,5,7,9, \ldots , 201

\displaystyle a = 3 d = 5 - 3 = 2 l = 201

\displaystyle n^{th} \text{ term from the end } = l - ( n-1) d

\displaystyle \text{Therefore } 12^{th} \text{ term from the end } = 201 - ( 12-1)(2) = 201 - 22 = 179

\displaystyle \text{ii) } \text{Given series } 3, 8,13 , \ldots , 253

\displaystyle a = 3 d = 8 - 3 = 5 l = 253

\displaystyle n^{th} \text{ term from the end } = l - ( n-1) d

\displaystyle \text{Therefore } 12^{th} \text{ term from the end } = 252 - ( 12-1)(5) = 253 - 55 = 198

\displaystyle \text{iii) } \text{Given series } 1,4,7,10, \ldots ,88

\displaystyle a = 1 d = 4 - 1 = 3 l = 88

\displaystyle n^{th} \text{ term from the end } = l - ( n-1) d

\displaystyle \text{Therefore } 12^{th} \text{ term from the end } = 88 - ( 12-1)(3) = 88 - 33 = 55

\displaystyle \\

Question 16: The \displaystyle 4^{th} term of an A.P. is three times the first and the \displaystyle 7^{th} term exceeds twice the third term by \displaystyle 1 . Find the first term and the common difference.

Answer:

\displaystyle \text{Given } a_4 = 3a

\displaystyle \Rightarrow a+ ( 4 - 1) d = 3a

\displaystyle \Rightarrow 3d = 2a … … … … … i)

\displaystyle \text{Also } a_7 - 2a_3 = 1

\displaystyle \Rightarrow a+(7-1)d - 2 [ a + ( 3-1) d ] = 1

\displaystyle \Rightarrow a + 6d - 2 ( a + 2d) = 1

\displaystyle \Rightarrow a + 6d - 2a - 4d = 1

\displaystyle \Rightarrow 2d - a = 1 … … … … … ii)

Substituting in i) we get

\displaystyle 3d = 2 ( 2d -1 )

\displaystyle \Rightarrow 3d = 4d - 2

\displaystyle \Rightarrow d = 2

\displaystyle \therefore a = 2(2) - 1 = 4 -1 = 3

\displaystyle \\

Question 17: Find the second term and \displaystyle n^{th} term of an A.P. whose \displaystyle 6^{th} term is \displaystyle 12 and the \displaystyle 8^{th} term is \displaystyle 22 .

Answer:

\displaystyle \text{We know } a_n = a + (n-1)d

Given, \displaystyle a_6 = 12

\displaystyle \Rightarrow a + ( 6-1) d = 12

\displaystyle \Rightarrow a + 5d = 12 … … … … … i)

\displaystyle \text{Also } a_8 = 22

\displaystyle \Rightarrow a + ( 8-1) d = 22

\displaystyle \Rightarrow a + 7d = 22 … … … … … ii)

Solving i) and ii) we get

\displaystyle 12-5d = 22-7d

\displaystyle 2d = 10

\displaystyle d = 5

\displaystyle \therefore a = 12 - 5 ( 5) = 12 - 25 = - 13

\displaystyle \text{Hence } a_2 = -13 + ( 2-1) (5) = -13 + 5 = -8

\displaystyle a_n = -13 + ( n-1)(5) = -13 + 5n - 5 = -18 + 5n

\displaystyle \\

Question 18: How many numbers of two-digit are divisible by \displaystyle 3 ?

Answer:

The sequence would be \displaystyle 12, 15, 18, \ldots , 96, 99

\displaystyle \text{Therefore } a = 12 , d = ( 15-12) = 3 a_n = 99

\displaystyle \text{We know } a_n = a + (n-1)d

\displaystyle \therefore 99 = 12 + (n-1) (3)

\displaystyle \Rightarrow 90 = 3n

\displaystyle \Rightarrow n = 30

Therefore there are \displaystyle 30 such numbers which are two digit are divisible by \displaystyle 3

\displaystyle \\

Question 19: An A.P. consists of \displaystyle 60 terms. If the first and the last terms be \displaystyle 7 \text{ and } 125 respectively, find \displaystyle 32^{nd} term.

Answer:

\displaystyle \text{Given } a = 7, n = 60 , l = 125

\displaystyle \text{We know } l = a + ( n-1) d

\displaystyle \Rightarrow 125 = 7 + ( 60-1) d

\displaystyle \Rightarrow 118 = 59 d

\displaystyle \Rightarrow d = 2

\displaystyle \text{We know } a_n = a + (n-1)d

\displaystyle \therefore a_{32} = 7 + ( 32-1) (2) = 69

\displaystyle \\

Question 20: The sum of \displaystyle 4^{th} \text{ and } 8^{th} terms of an A.P. is \displaystyle 24 and the sum of the \displaystyle 6^{th} \text{ and } 10^{th} terms is \displaystyle 34 . Find the first term and the common difference of the A.P.

Answer:

\displaystyle \text{Given } a_4 + a_8 = 24

\displaystyle \Rightarrow a + ( 4-1) d + a + ( 8-1) d = 24

\displaystyle \Rightarrow 2a + 10d = 24

\displaystyle \Rightarrow a + 5d = 12

\displaystyle \text{Also } a_6 + a_{10} = 34

\displaystyle \Rightarrow a + ( 6-1) d + a + ( 10-1) d = 34

\displaystyle \Rightarrow 2a + 14d = 34

\displaystyle \Rightarrow a + 7d = 17

Solving i) and ii) we get

\displaystyle 12-5d = 17 - 7d

\displaystyle \Rightarrow 2d = 5

\displaystyle \Rightarrow d = \frac{5}{2}

Substituting in i) we get

\displaystyle a = 2 - 5 ( \frac{5}{2} ) = 12 - \frac{25}{2} = \frac{-1}{2}

\displaystyle \\

Question 21: How many numbers are there between \displaystyle 1 \text{ and } 1000 which when divided by \displaystyle 7 leave remainder \displaystyle 4 ?

Answer:

If a number \displaystyle N is divided by \displaystyle 7 and leaves \displaystyle 4 as remainder, it can be represented as \displaystyle N = 7q + 4 , q \in N

Therefore the sequence would be \displaystyle 4, 11, 18, \ldots, 998

\displaystyle \text{Hence } a = 4, d = ( 11- 4) = 7, l = 998

\displaystyle \text{We know } l = a + ( n-1) d

\displaystyle \Rightarrow 998 = 4 + ( n-1) (7)

\displaystyle \Rightarrow 1001 = 7n

\displaystyle \Rightarrow n = 143

Hence there are \displaystyle 143 numbers between \displaystyle 1 \text{ and } 1000 which when divided by \displaystyle 7 leave remainder \displaystyle 4

\displaystyle \\

Question 22: The first and the last terms of an A.P. are \displaystyle a \text{ and } l respectively. Show that the sum of \displaystyle n^{th} term from the beginning and \displaystyle n^{th} term from the end is \displaystyle a + l .

Answer:

Given: first term \displaystyle = a \text{ and last term } = l

\displaystyle a_n = a + (n-1) d

\displaystyle n^{th} \text{ term from end } = l - (n-1)d

Therefore the sum of the two terms \displaystyle = a + (n-1) d + l - (n-1)d = a+l

\displaystyle \\

\displaystyle \text{Question 23: If an A.P. is such that } \frac{a_4}{a_7} = \frac{2}{3}  , \text{ find } \frac{a_6}{a_8}.

Answer:

\displaystyle \text{Given } \frac{a_4}{a_7} = \frac{2}{3}

\displaystyle \Rightarrow \frac{a + (4-1)d}{a + (7-1) d} = \frac{2}{3}

\displaystyle \Rightarrow 3(a+3d) = 2(9+6d)

\displaystyle \Rightarrow 3a + 9d = 2a +12d

\displaystyle \Rightarrow a = 3d

\displaystyle \text{Therefore } \frac{a_6}{a_8} = \frac{a+(6-1)d}{a+(8-1)d} = \frac{a+5d}{a+7d} = \frac{3d+5d}{3d+7d} = \frac{8}{10} = \frac{4}{5}

\displaystyle \\

Question 24: If \displaystyle \theta_1, \theta_2, \theta_3, \ldots \theta_n are in AP, whose common difference is \displaystyle d , show that, \displaystyle \sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + \ldots + \sec \theta_{n-1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d}  

Answer:

\displaystyle \text{Given } \theta_1, \theta_2, \theta_3, \ldots \theta_n are in AP

\displaystyle \therefore d = \theta_2 - \theta_1= \theta_3 - \theta_2= \ldots = \theta_{n} - \theta_{n-1}

\displaystyle \text{LHS } = \sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + \ldots + \sec \theta_{n-1} \sec \theta_n

\displaystyle = \frac{1}{\cos \theta_1 \cdot \cos \theta_2} + \frac{1}{\cos \theta_2 \cdot \cos \theta_3} + \ldots + \frac{1}{\cos \theta_{n-1} \cdot \cos \theta_n}

\displaystyle = \frac{1}{\sin d} \Big[ \frac{\sin d}{\cos \theta_1 \cdot \cos \theta_2} + \frac{\sin d}{\cos \theta_2 \cdot \cos \theta_3} + \ldots + \frac{\sin d}{\cos \theta_{n-1} \cdot \cos \theta_n} \Big]

\displaystyle = \frac{1}{\sin d} \Big[ \frac{\sin (\theta_2 - \theta_1)}{\cos \theta_1 \cdot \cos \theta_2} + \frac{\sin (\theta_3 - \theta_2)}{\cos \theta_2 \cdot \cos \theta_3} + \ldots + \frac{\sin (\theta_n - \theta_{n-1})}{\cos \theta_{n-1} \cdot \cos \theta_n} \Big]

\displaystyle = \frac{1}{\sin d} \Big[ \frac{\sin \theta_2 \cdot \cos \theta_1 - \cos \theta_2 \cdot \sin \theta_1 }{\cos \theta_1 \cdot \cos \theta_2} + \frac{\sin \theta_3 \cdot \cos \theta_2 - \cos \theta_3 \cdot \sin \theta_2}{\cos \theta_2 \cdot \cos \theta_3} + \ldots + \frac{\sin \theta_n \cdot \cos \theta_{n-1} - \cos \theta_n \cdot \sin \theta_{n-1}}{\cos \theta_{n-1} \cdot \cos \theta_n} \Big]

\displaystyle = \frac{1}{\sin d} [ \tan \theta_2 - \tan \theta_1 + \tan \theta_3 - \tan \theta_2 + \ldots + \tan \theta_n - \tan \theta_{n-1} ]

\displaystyle = \frac{1}{\sin d} [ \tan \theta_n - \tan \theta_1 ]

\displaystyle = \frac{ \tan \theta_n - \tan \theta_1}{\sin d} = \text{ RHS. Hence proved. }