Question 1: Find the \displaystyle \text{A.M} . between: 

\displaystyle \text{i) } 7 \text{ and } 13 \hspace{1,0cm} \text{ii) } 12 \text{ and } -8 \hspace{1,0cm} \text{iii) } (x-y) \text{ and } (x + y) .

Answer:

\displaystyle \text{i) } \text{Let } A \text{ be the Arithmetic Mean of } 7 \text{ and } 13 .

\displaystyle \text{Therefore } 7, A, 13 \text{ are in A.P. }

\displaystyle \Rightarrow A - 7 = 13 - A

\displaystyle \Rightarrow A = \frac{7+13}{2} = 10

\displaystyle \text{Hence the Arithmetic Mean of } 7 \text{ and } 13 \text{ is } 10

\displaystyle \text{ii) } \text{Let } A \text{ be the Arithmetic Mean of } 12 \text{ and } -8

\displaystyle \text{Therefore } 12, A, -8 \text{ are in A.P. }

\displaystyle \Rightarrow A - 12 = -8 - A

\displaystyle \Rightarrow A = \frac{12-8}{2} = 2

\displaystyle \text{Hence the Arithmetic Mean of } 12 \text{ and } -8 \text{ is } 2

\displaystyle \text{iii) } \text{Let } A \text{ be the Arithmetic Mean of } (x-y) \text{ and } (x+y)

\displaystyle \text{Therefore } (x-y), A, (x+y) \text{ are in A.P. }

\displaystyle \Rightarrow A - (x-y) = (x+y) - A

\displaystyle \Rightarrow A = \frac{x+y+x-y}{2} = x

\displaystyle \text{Hence the Arithmetic Mean of } (x-y) \text{ and } (x+y) \text{ is } x

\displaystyle \\

Question 2: Insert \displaystyle 4 \text{A.M.s} between \displaystyle 4 \text{ and } 19 .

Answer:

\displaystyle \text{Let } A_1, A_2, A_3, A_4, be the 4 A.M.s between \displaystyle 4 \text{ and } 19

\displaystyle \text{Therefore } 4, A_1, A_2, A_3, A_4, 19 \text{ are in A.P. }

\displaystyle a = 4 \ \ a_6 = 19

\displaystyle \text{We know } a_n = a + ( n-1) d

\displaystyle \therefore 19 = 4 + ( 6-1)(d) \Rightarrow 5d = 15 \Rightarrow d = 3

Therefore

\displaystyle A_1 = a + d = 4 + 3 = 7

\displaystyle A_2 = A_1 + d = 7 +3 = 10

\displaystyle A_3 = A_2 + d = 10 + 3 = 13

\displaystyle A_4 = A_3 + d = 13 + 3 = 16

Therefore the 4 A.M.s between \displaystyle 4 \text{ and } 19 are \displaystyle 7, 10, 13 ,16

\displaystyle \\

Question 3: Insert \displaystyle 7 \text{A.M.s} between \displaystyle 2 \text{ and } 17 .

Answer:

\displaystyle \text{Let } A_1, A_2, A_3, A_4, A_5, A_6, A_7 be the 7 A.M.s between \displaystyle 2 \text{ and } 17

\displaystyle \text{Therefore } 2, A_1, A_2, A_3, A_4, A_5, A_6, A_7, 17 \text{ are in A.P. }

\displaystyle a = 2 \ \ a_9 = 17

\displaystyle \text{We know } a_n = a + ( n-1) d

\displaystyle \therefore 17 = 2 + ( 9-1)(d) \Rightarrow 15 = 8d \Rightarrow d = \frac{15}{8}

Therefore

\displaystyle A_1 = a + d = 2 + \frac{15}{8} = \frac{31}{8}

\displaystyle A_2 = A_1 + d = \frac{31}{8} +\frac{15}{8} = \frac{46}{8}

\displaystyle A_3 = A_2 + d = \frac{46}{8} + \frac{15}{8} = \frac{61}{8}

\displaystyle A_4 = A_3 + d = \frac{61}{8} + \frac{15}{8} = \frac{76}{8}

\displaystyle A_5 = A_4 + d = \frac{76}{8} +\frac{15}{8} = \frac{91}{8}

\displaystyle A_6 = A_5 + d = \frac{91}{8} + \frac{15}{8} = \frac{106}{8}

\displaystyle A_7 = A_6 + d = \frac{106}{8} + \frac{15}{8} = \frac{121}{8}

Therefore the 4 A.M.s between \displaystyle 4 \text{ and } 19 are \displaystyle \frac{31}{8},\frac{46}{8},\frac{61}{8},\frac{76}{8},\frac{91}{8},\frac{106}{8},\frac{121}{8}

\displaystyle \\

Question 4: Insert \displaystyle 6 \text{A.M.s} between \displaystyle 15 \text{ and } -13 .

Answer:

\displaystyle \text{Let } A_1, A_2, A_3, A_4, A_5, A_6 be the 6 A.M.s between \displaystyle 15 \text{ and } -13

\displaystyle \text{Therefore } 15, A_1, A_2, A_3, A_4, A_5, A_6, -13 \text{ are in A.P. }

\displaystyle a = 15 \ \ a_8 = -13

\displaystyle \text{We know } a_n = a + ( n-1) d

\displaystyle \therefore -13 = 15 + ( 8-1)(d) \Rightarrow 7d = -28 \Rightarrow d = -4

Therefore

\displaystyle A_1 = a + d = 15 -4 = 11

\displaystyle A_2 = A_1 + d = 11 -4 = 7

\displaystyle A_3 = A_2 + d = 7 -4 = 3

\displaystyle A_4 = A_3 + d = 3 -4 = -1

\displaystyle A_5 = A_4 + d = -1 -4 = -5

\displaystyle A_6 = A_5 + d = -5 -4 = 9

Therefore the 6 A.M.s between \displaystyle 15 \text{ and } -13 are \displaystyle 11,7,3,-1,-5,-9

\displaystyle \\

Question 5: There are \displaystyle n \text{A.M.s} between \displaystyle 3 \text{ and } 17 . The ratio of the last mean to the first mean is \displaystyle 3 : 1 . Find the value of \displaystyle n .

Answer:

\displaystyle \text{Let } A_1, A_2, \dots , A_n \text{ be the arithmetic means between } 3 \text{ and } 17

\displaystyle \therefore a = 3 \text{ and } a_{n+2} = 17

\displaystyle \text{We know } a_n = a + ( n-1) d

\displaystyle \Rightarrow 17 = 3 + ( n+2-1) d

\displaystyle \Rightarrow 14 = ( n+1) d

\displaystyle \Rightarrow d = \frac{14}{n+1}

\displaystyle A_1 a + d = a + \frac{14}{n+1} = \frac{3n+17}{n+1}

\displaystyle A_n = 3 + nd = 3 + n \Big( \frac{14}{n+1} \Big) = \frac{17n+3}{n+1}

\displaystyle \therefore \frac{A_n}{A_1} = \frac{3}{1}

\displaystyle \Rightarrow \frac{\frac{17n+3}{n+1}}{\frac{3n+17}{n+1}} = \frac{3}{7}

\displaystyle \Rightarrow \frac{17n+3}{3n+17} = \frac{3}{1}

\displaystyle \Rightarrow 17n + 3 = 9n + 51

\displaystyle \Rightarrow 8n = 48

\displaystyle \Rightarrow n = 6

\displaystyle \\

Question 6: Insert \displaystyle \text{A.M.s} , between \displaystyle 7 \text{ and } 71 in such a way that \displaystyle 5^{th} \text{A.M.} \text{ is } 27 . Find the number of \displaystyle \text{A.M.s} .

Answer:

\displaystyle \text{Let } A_1, A_2, \dots , A_n \text{ be the arithmetic means between } 7 \text{ and } 71

\displaystyle \text{Given } a = 7 \ \ a_6 = 27

\displaystyle \therefore a + 5d = 27

\displaystyle \Rightarrow 5d = 27 - 7

\displaystyle \Rightarrow d = 4

\displaystyle A_{n+2} = 71

\displaystyle \Rightarrow 71 = 7 + ( n+2-1) ( 4)

\displaystyle \Rightarrow 71 = 7 + 4n + 4

\displaystyle \Rightarrow 60 = 4n

\displaystyle \Rightarrow n = 15

Therefore there are \displaystyle 15 \text{ A.M.s }

\displaystyle \\

Question 7: If \displaystyle n \text{A.M.s} are inserted between two numbers, prove that the sum of the mean equidistant from the beginning and the end is constant.

Answer:

\displaystyle \text{Let } A_1, A_2, \dots , A_n \text{ be the arithmetic means between } a \text{ and } b

\displaystyle \therefore a = a \text{ and } a_{n+2} = b

\displaystyle \therefore b = a + ( n+2-1) d

\displaystyle \Rightarrow d = \frac{b-a}{n+1}

\displaystyle A_1 + A_2+ \ldots + A_n = \frac{n}{2} [ A_1+A_n]

\displaystyle = \frac{n}{2} [ A_1-d + A_n + d]

\displaystyle = \frac{n}{2} [a+b]

\displaystyle = \text{ A.M. between } a \text{ and } b which is constant.

\displaystyle \\

Question 8: If \displaystyle x, y, z \text{ are in A.P. } \text{and } A_1 \text{ is the } \text{A.M.} \text{ of } x \text{ and } y \text{ and } A_2 \text{ is the } \text{A.M.} \text{ of } y \text{ and } z , then prove that the \displaystyle \text{A.M.s} \text{ of } A_1 \text{ and } A_2 \text{ is } y .

Answer:

\displaystyle \text{Given } x, y, z \text{ are in A.P. } \text{Therefore } y = \frac{x+z}{2}

Now, \displaystyle A_1 =\frac{x+y}{2} = \frac{x+ \big(\frac{x+z}{2} \big)}{2} = \frac{3x+z}{4}

And \displaystyle A_2 = \frac{y+z}{2} = \frac{\big(\frac{x+z}{2} \big)+z}{2} = \frac{3z+x}{4}

\displaystyle \text{Let } A_3 \text{ be the Arithmetic Mean of } A_1 \text{ and } A_2

\displaystyle \therefore A_3 = \frac{A_1+A_2}{2} = \frac{\frac{3x+z}{4} + \frac{3z+x}{4} }{2} = \frac{4x+4z}{8} = \frac{x+y}{2} = y . Hence proved.

\displaystyle \\

Question 9: Insert five numbers between \displaystyle 8 \text{ and } 26 such that the resulting sequence is an A.P..

Answer:

\displaystyle \text{Let } A_1, A_2, A_3, A_4, A_5 be the 5 A.M.s between \displaystyle 8 \text{ and } 26

\displaystyle \text{Therefore } 8, A_1, A_2, A_3, A_4, A_5, A_6, 26 \text{ are in A.P. }

\displaystyle a = 8 \ \ a_7 = 26

\displaystyle \text{We know } a_n = a + ( n-1) d

\displaystyle \therefore 26 = 8 + ( 7-1)(d) \Rightarrow 6d = 18 \Rightarrow d = 3

Therefore

\displaystyle A_1 = a + d = 8 +3 = 11

\displaystyle A_2 = A_1 + d = 11 +3 = 14

\displaystyle A_3 = A_2 + d = 14 +3 = 17

\displaystyle A_4 = A_3 + d = 17 +3 = 20

\displaystyle A_5 = A_4 + d = 20 +3 = 23

Therefore the 5 A.M.s between \displaystyle 8 \text{ and } 26 are \displaystyle 11, 14, 17, 20, 23