Question 1: Reduce the equation \displaystyle \sqrt{3}x +y +2 = 0 to: 

(i) slope-intercept form and find slope and y-intercept (ii) intercept form and find intercept on the axes; (iii) the normal form and find \displaystyle p \text{ and } \alpha .

Answer:

i) \displaystyle \text{Given } \sqrt{3}x +y +2 = 0

\displaystyle \Rightarrow y = - \sqrt{3} x - 2

\displaystyle \text{Therefore slope } = -\sqrt{3} \text{ and y-intercept } = -2

ii) \displaystyle \text{Given } \sqrt{3}x +y +2 = 0

\displaystyle \Rightarrow \sqrt{3}x +y = - 2

\displaystyle \Rightarrow \frac{\sqrt{3}}{-2} x+\frac{1}{-2} y = 1

\displaystyle \Rightarrow \frac{x}{(-2/\sqrt{3})}+\frac{y}{(-2)} = 1

\displaystyle \text{Therefore x-intercept } (a) = \frac{-2}{\sqrt{3}} \text{ and y-intercept } (b) = -2

iii) \displaystyle \text{Given } \sqrt{3}x +y +2 = 0

\displaystyle \Rightarrow -\sqrt{3}x -y =2

\displaystyle \Rightarrow \frac{-\sqrt{3}x}{\sqrt{(-\sqrt{3})^2 + ( -1)^2}} - \frac{y}{\sqrt{(-\sqrt{3})^2 + ( -1)^2}}=\frac{2}{\sqrt{(-\sqrt{3})^2 + ( -1)^2}}  

\displaystyle \Rightarrow \frac{-\sqrt{3}x}{2} - \frac{y}{2} = 1

\displaystyle \text{Therefore } p = 1, \hspace{0.5cm} \cos \alpha = \frac{-\sqrt{3}}{2} , \hspace{0.5cm} \sin \alpha = \frac{-1}{2} \text{ and } \alpha = 210^{\circ}

Since the coefficient of both \displaystyle x \text{ and } y are negative, \displaystyle \alpha lies in the \displaystyle 3^{rd} Quadrant.

\displaystyle \\

Question 2: Reduce the following equations to the normal form and find \displaystyle p \text{ and } \alpha in each case:

i) \displaystyle x+\sqrt{3}y - 4 = 0 ii) \displaystyle x+y + \sqrt{2} = 0 iii) \displaystyle x-y + 2\sqrt{2} = 0

iv) \displaystyle x-3=0 v) \displaystyle y-2=0

Answer:

i) \displaystyle \text{Given } x+\sqrt{3}y - 4 = 0

\displaystyle \Rightarrow x+\sqrt{3}y = 4

\displaystyle \Rightarrow \frac{x}{\sqrt{(1)^2 + ( \sqrt{3} )^2}} + \frac{\sqrt{3} y}{\sqrt{(1)^2 + ( \sqrt{3} )^2}} = \frac{4}{\sqrt{(1)^2 + ( \sqrt{3} )^2}}  

\displaystyle \Rightarrow \frac{x}{2} + \frac{\sqrt{3}y}{2} = 2

\displaystyle \text{Therefore } p = 2, \hspace{0.5cm} \cos \alpha = \frac{1}{2} , \hspace{0.5cm} \sin \alpha = \frac{\sqrt{3}}{2} \text{ and } \alpha = 60^{\circ}

Since the coefficient of both \displaystyle x \text{ and } y are positive, \displaystyle \alpha lies in the \displaystyle 1^{st} Quadrant.

ii) \displaystyle \text{Given } x+y + \sqrt{2} = 0

\displaystyle \Rightarrow -x-y= \sqrt{2}

\displaystyle \Rightarrow \frac{-x}{\sqrt{(-1)^2 + ( -1 )^2}} - \frac{ y}{\sqrt{(-1)^2 + ( -1 )^2}} = \frac{\sqrt{2}}{\sqrt{(-1)^2 + ( -1 )^2}}  

\displaystyle \Rightarrow - \frac{x}{\sqrt{2} } - \frac{y}{\sqrt{2}} = 1

\displaystyle \text{Therefore } p = 1, \hspace{0.5cm} \cos \alpha = \frac{-1}{\sqrt{2}} , \hspace{0.5cm} \sin \alpha = \frac{-1}{\sqrt{2}} \text{ and } \alpha = 225^{\circ}

Since the coefficient of both \displaystyle x \text{ and } y are negative, \displaystyle \alpha lies in the \displaystyle 3^{rd} Quadrant.

iii) \displaystyle \text{Given } x-y + 2\sqrt{2} = 0

\displaystyle \Rightarrow -x+y= 2\sqrt{2}

\displaystyle \Rightarrow \frac{-x}{\sqrt{(-1)^2 + ( 1 )^2}} + \frac{ y}{\sqrt{(-1)^2 + ( +1 )^2}} = \frac{2\sqrt{2}}{\sqrt{(-1)^2 + ( 1 )^2}}  

\displaystyle \Rightarrow - \frac{x}{\sqrt{2} } + \frac{y}{\sqrt{2}} = 2

\displaystyle \text{Therefore } p = 2, \hspace{0.5cm} \cos \alpha = \frac{-1}{2} , \hspace{0.5cm} \sin \alpha = \frac{1}{\sqrt{2}} \text{ and } \alpha = 135^{\circ}

Since the coefficient of both \displaystyle x is negative and \displaystyle y y is positive, \displaystyle \alpha lies in the \displaystyle 2^{nd} Quadrant.

iv) \displaystyle \text{Given } x-3=0

\displaystyle \Rightarrow x + 0y = 3

\displaystyle \Rightarrow \frac{x}{\sqrt{(1)^2 + ( 0 )^2}} + \frac{ 0 \cdot y}{\sqrt{(1)^2 + ( 0 )^2}} = \frac{3}{\sqrt{(1)^2 + ( 0 )^2}}  

\displaystyle \Rightarrow \frac{x}{1} + \frac{0 \cdot y}{1} = 3

\displaystyle \text{Therefore } p = 3, \hspace{0.5cm} \cos \alpha = 1 , \hspace{0.5cm} \sin \alpha = 0 \text{ and } \alpha = 0^{\circ}

v) \displaystyle \text{Given } y-2=0

\displaystyle \Rightarrow 0x + 1y = 2

\displaystyle \Rightarrow \frac{0 \cdot x}{\sqrt{(0)^2 + ( 1 )^2}} + \frac{ y}{\sqrt{(0)^2 + ( 1 )^2}} = \frac{2}{\sqrt{(0)^2 + ( 1 )^2}}  

\displaystyle \Rightarrow \frac{0 \cdot x}{1} + \frac{y}{1} = 2

\displaystyle \text{Therefore } p = 2, \hspace{0.5cm} \cos \alpha = 0 , \hspace{0.5cm} \sin \alpha = 1 \text{ and } \alpha = 90^{\circ}

\displaystyle \\

Question 3: Put the equation \displaystyle \frac{x}{a} + \frac{y}{b} =1 to the slope intercept form and find its slope and y-intercept.

Answer:

\displaystyle \text{Given } \frac{x}{a} + \frac{y}{b} =1

\displaystyle \Rightarrow bx + ay = ab

\displaystyle \Rightarrow ay = - bx + ab

\displaystyle \Rightarrow y = \frac{-b}{a} x + b

Comparing with \displaystyle y = mx + c \text{ where slope }  = m \text{ and y-intercept } = c

\displaystyle \text{Therefore } \text{Slope} = \frac{-b}{a} \text{ and y-intercept } = b

\displaystyle \\

Question 4: Reduce the lines \displaystyle 3 x - 4 y + 4 =0 \text{ and } 2 x + 4 y -5 = 0 to the normal form and hence find which line is nearer to the origin.

Answer:

\displaystyle \text{ Line 1: }  \text{Given } 3x-4y+4=0

\displaystyle \Rightarrow -3x+4y=4

\displaystyle \Rightarrow \frac{-3x}{\sqrt{(-3)^2 + ( 4 )^2}} + \frac{ 4y}{\sqrt{(-3)^2 + ( 4 )^2}} = \frac{4}{\sqrt{(-3)^2 + ( 4 )^2}}  

\displaystyle \Rightarrow - \frac{3x}{5 } + \frac{4y}{5} = \frac{4}{5}  

\displaystyle \text{Therefore } p_1 = \frac{4}{5}  

\displaystyle \text{ Line 2: }  \text{Given } 2x+4y-5=0

\displaystyle \Rightarrow 2x+4y=5

\displaystyle \Rightarrow \frac{2x}{\sqrt{(2)^2 + ( 4 )^2}} + \frac{ 4y}{\sqrt{(2)^2 + ( 4 )^2}} = \frac{5}{\sqrt{(-3)^2 + ( 4 )^2}}  

\displaystyle \Rightarrow \frac{2x}{2\sqrt{5} } + \frac{2y}{2\sqrt{5}} = \frac{\sqrt{5}}{2}  

\displaystyle \text{Therefore } p_2 = \frac{\sqrt{5}}{2}  

Since \displaystyle \frac{\sqrt{5}}{2} > \frac{4}{5} , we can say that \displaystyle 3x-4y+4 = 0 is nearer to the origin as compared to \displaystyle 2x+ 4y -5=0

\displaystyle \\

Question 5: Show that the origin is equidistant from the lines \displaystyle 4x + 3y + 10 = 0 ; \displaystyle 5x -12y + 26 =0 \text{ and } 7x+24y=50 .

Answer:

\displaystyle \text{ Line 1: }  \text{Given } 4x + 3y + 10 = 0

\displaystyle \Rightarrow -4x-3y=10

\displaystyle \Rightarrow \frac{-4x}{\sqrt{(-4)^2 + ( -3 )^2}} - \frac{ 3y}{\sqrt{(-4)^2 + ( -3 )^2}} = \frac{10}{\sqrt{(-4)^2 + ( -3 )^2}}  

\displaystyle \Rightarrow - \frac{4x}{5 } - \frac{3y}{5} = 2

\displaystyle \text{Therefore } p_1 = 2  

\displaystyle \text{ Line 2: }  \text{Given } 5x -12y + 26 =0

\displaystyle \Rightarrow -5x+12y=26

\displaystyle \Rightarrow \frac{-5x}{\sqrt{(-5)^2 + ( 12 )^2}} + \frac{ 12y}{\sqrt{(-5)^2 + ( 12 )^2}} = \frac{26}{\sqrt{(-5)^2 + ( 12 )^2}}  

\displaystyle \Rightarrow - \frac{5x}{13 } + \frac{12y}{13} = 2  

\displaystyle \text{Therefore } p_2 = 2  

\displaystyle \text{ Line 3: }  \text{Given } 7x+24y=50

\displaystyle \Rightarrow \frac{7x}{\sqrt{(7)^2 + ( 24 )^2}} + \frac{ 24y}{\sqrt{(7)^2 + ( 24 )^2}} = \frac{50}{\sqrt{(7)^2 + ( 24 )^2}}  

\displaystyle \Rightarrow \frac{7x}{25 } + \frac{24y}{25} = 2  

\displaystyle \text{Therefore } p_3 = 2  

Since \displaystyle p_1=p_2=p_3 , the given lines \displaystyle 4x + 3y + 10 = 0 ; \displaystyle 5x -12y + 26 =0 \text{ and } 7x+24y=50 are equidistance from the origin.

\displaystyle \\

Question 6: Find the values of \displaystyle 0 \text{ and } p , if the equation \displaystyle x \cos \theta + y \sin \theta =p is the normal form of the line \displaystyle \sqrt{3}x+y+2=0 .

Answer:

\displaystyle \text{Given } \sqrt{3}x +y +2 = 0

\displaystyle \Rightarrow -\sqrt{3}x -y =2

\displaystyle \Rightarrow \frac{-\sqrt{3}x}{\sqrt{(-\sqrt{3})^2 + ( -1)^2}} - \frac{y}{\sqrt{(-\sqrt{3})^2 + ( -1)^2}}=\frac{2}{\sqrt{(-\sqrt{3})^2 + ( -1)^2}}  

\displaystyle \Rightarrow \frac{-\sqrt{3}x}{2} - \frac{y}{2} = 1

\displaystyle \text{Therefore } p = 1, \hspace{0.5cm} \cos \theta = \frac{-\sqrt{3}}{2} , \hspace{0.5cm} \sin \theta = \frac{-1}{2} \text{ and } \theta = 210^{\circ}

\displaystyle \\

Question 7: Reduce the equation \displaystyle 3 x -2y + 5 =0 to the intercept form and find the \displaystyle x \text{ and } y intercepts.

Answer:

\displaystyle \text{Given equation } 3 x -2y + 6 =0

\displaystyle \Rightarrow 3x-2y=-6

\displaystyle \Rightarrow \frac{3x}{-6} - \frac{2y}{-6} = 1

\displaystyle \Rightarrow - \frac{1}{2} x+ \frac{1}{3} y =1

\displaystyle \Rightarrow \frac{x}{(-2)} + \frac{y}{3} = 1

\displaystyle \text{Hence, x-intercept } \Rightarrow = -2 \text{ and y-intercept } \Rightarrow = 3

\displaystyle \\

Question 8: The perpendicular distance of a line from the origin is \displaystyle 5 units and its slope is \displaystyle - 1 . Find the equation of the line.

Answer:

\displaystyle \text{Given } p = 5

Therefore equation of line:

\displaystyle x \cos \alpha + y \sin \alpha = 5

\displaystyle \Rightarrow y \sin \alpha = - x \cos \alpha + 5

\displaystyle \Rightarrow y = - x \cot \alpha + \frac{5}{\sin \alpha}  

Comparing with \displaystyle y = mx + c \text{ where slope }  = m \text{ and y-intercept } = c

Slope \displaystyle = - \cot \alpha = - 1

\displaystyle \Rightarrow \cot \alpha = 1 \Rightarrow \alpha = 45^{\circ}

Therefore the equation of line is

\displaystyle x \cos 45^{\circ} + \sin 45^{\circ} = 5

\displaystyle \Rightarrow \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = 5

\displaystyle \Rightarrow x + y = 5\sqrt{2}