Note: If \displaystyle a_1x+b_1y+c_1 = 0 \text{ and } a_2x+b_2y+c_2 = 0 intersect at a point \displaystyle P(x_1, y_1) , then \displaystyle x_1 = \frac{b_1c_2-b_2c_1}{a_1b_2-a_2b_1} \text{ and } y_1 = \frac{c_1a_2-c_2a_1}{a_1b_2-a_2b_1}  

Question 1: Find the point of intersection of the following pairs of lines :

\displaystyle \text{i) } 2x-y+ 3 =0 \text{ and } x+y -5=0 \hspace{1.0cm} \text{ii) } bx+ay = ab \text{ and } ax + by = ab

\displaystyle \text{iii) } y = m_1 x + \frac{a}{m_1} \text{ and } y = m_2 x + \frac{a}{m_2}  

Answer:

\displaystyle \text{i) } \text{Given } 2x-y+ 3 =0 \text{ and } x+y -5=0

\displaystyle \text{Here comparing } 2x-y+ 3 =0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 2, \hspace{0.5cm} b_1 = -1 , \hspace{0.5cm} c_1 = 3

\displaystyle \text{Similarly, comparing } x+y -5=0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = 1 , \hspace{0.5cm} c_2 = -5

Therefore,

\displaystyle x_1 = \frac{(-1)(-5)-(1)(3)}{(2)(1)-(1)(-1)} = \frac{5-3}{2+1} = \frac{2}{3}  

\displaystyle y_1 = \frac{(3)(1)-(-5)(2)}{(2)(1)-(1)(-1)} = \frac{3-10}{2+1} = \frac{13}{3}  

\displaystyle \text{Hence the coordinates of the intersection of the lines } 2x-y+ 3 =0 \text{ and } x+y -5=0 \text{ are } \Big( \frac{2}{3} , \frac{13}{3} \Big)

\displaystyle \text{ii) } \text{Given } bx+ay = ab \text{ and } ax + by = ab

\displaystyle \text{Here comparing } bx+ay = ab \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = b, \hspace{0.5cm} b_1 = a , \hspace{0.5cm} c_1 = -ab

\displaystyle \text{Similarly, comparing } ax + by = ab \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = a, \hspace{0.5cm} b_2 = b , \hspace{0.5cm} c_2 = -ab

Therefore,

\displaystyle x_1 = \frac{(a)(-ab)-(b)(-ab)}{(b)(b)-(a)(a)} = \frac{-a^2b+ab^2}{b^2-a^2} = \frac{ab}{b+a}  

\displaystyle y_1 = \frac{(-ab)(a)-(-ab)(b)}{(b)(b)-(a)(a)} = \frac{-a^2b+ab^2}{b^2-a^2} = \frac{ab}{b+a}  

\displaystyle \text{Hence the coordinates of the intersection of the lines } bx+ay = ab \text{ and } ax + by = ab \text{ are } \Big( \frac{ab}{b+a} , \frac{ab}{b+a} \Big)

\displaystyle \text{iii) } \text{Given } y = m_1 x + \frac{a}{m_1} \text{ and } y = m_2 x + \frac{a}{m_2}  

\displaystyle \text{Here comparing } y = m_1 x + \frac{a}{m_1} \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = m_1, \hspace{0.5cm} b_1 = -1 , \hspace{0.5cm} c_1 = \frac{a}{m_1}  

\displaystyle \text{Similarly, comparing } y = m_2 x + \frac{a}{m_2} \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = m_2, \hspace{0.5cm} b_2 = -1 , \hspace{0.5cm} c_2 = \frac{a}{m_2}  

Therefore,

\displaystyle x_1 = \frac{(-1)(\frac{a}{m_2})-(-1)(\frac{a}{m_1})}{(m_1)(-1)-(m_2)(-1)} = \frac{\frac{-a}{m_2}+\frac{a}{m_1}}{-m_1+m_2} = \frac{a(m_1-m_2)}{m_1m_2(m_1-m_2)} = \frac{a}{m_1m_2}  

\displaystyle y_1 = \frac{(\frac{a}{m_1})(m_2)-(\frac{a}{m_2})(m_1)}{(m_1)(-1)-(m_2)(-1)} = \frac{a({m_2}^2 - {m_1}^2)}{m_1m_2(m_2-m_1)} = \frac{a(m_2+m_1)}{m_1m_2} = \frac{a}{m_1} + \frac{a}{m_2}  

\displaystyle \text{Hence the coordinates of the intersection of the lines } y = m_1 x + \frac{a}{m_1} \text{ and } y = m_2 x + \frac{a}{m_2} \text{ are } \Big( \frac{a}{m_1m_2} , \frac{a}{m_1} + \frac{a}{m_2} \Big)

\displaystyle \\

Question 2: Find the coordinates of the vertices of a triangle, the equations of whose sides are:

\displaystyle \text{i) } x+ y -4=0, \ \ \ 2x-y+3 = 0 \text{ and } x-3y+2 = 0

\displaystyle \text{ii) } y (t_1 + t_2) = 2 x + 2 a t_1t_2, \ \ \ y (t_2 + t_3) = 2 x + 2 a t_2 t_3 \text{ and } y (t_3 + t_1) = 2 x + 2 at_1 t_3

Answer:

i) Given equations:

\displaystyle x+ y -4=0 … … … … … i)

\displaystyle 2x-y+3 = 0 … … … … … ii)

\displaystyle x-3y+2 = 0 … … … … … iii)

First consider equations i) and ii):

\displaystyle \text{Here comparing } x+ y -4=0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 1, \hspace{0.5cm} b_1 = 1 , \hspace{0.5cm} c_1 = -4

\displaystyle \text{Similarly, comparing } 2x-y+3 = 0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 2, \hspace{0.5cm} b_2 = -1 , \hspace{0.5cm} c_2 = 3

Therefore,

\displaystyle x_1 = \frac{(1)(3)-(-1)(-4)}{(1)(-1)-(2)(1)} = \frac{3-4}{-1-2} = \frac{1}{3}  

\displaystyle y_1 = \frac{(-4)(2)-(3)(1)}{(1)(-1)-(2)(1)} = \frac{-8-3}{-1-2} = \frac{11}{3}  

\displaystyle \text{Hence the coordinates of the intersection of the lines } x+ y -4=0 \text{ and } 2x-y+3 = 0 \text{ are } \Big( \frac{1}{3} , \frac{11}{3} \Big)

Now consider equations ii) and iii):

\displaystyle \text{Here comparing } 2x-y+3 = 0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 2, \hspace{0.5cm} b_1 = -1 , \hspace{0.5cm} c_1 = 3

\displaystyle \text{Similarly, comparing } x-3y+2 = 0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = -3 , \hspace{0.5cm} c_2 = 2

Therefore,

\displaystyle x_2 = \frac{(-1)(2)-(-3)(3)}{(2)(-3)-(1)(-1)} = \frac{-2+9}{-6+1} = \frac{-7}{5}  

\displaystyle y_2 = \frac{(3)(1)-(2)(2)}{(2)(-3)-(1)(-1)} = \frac{3-4}{-6+1} = \frac{1}{5}  

\displaystyle \text{Hence the coordinates of the intersection of the lines } 2x-y+3 = 0 \text{ and } x-3y+2 = 0 \text{ are } \Big( \frac{-7}{5} , \frac{1}{5} \Big)

Now consider equations iii) and i):

\displaystyle \text{Here comparing } x-3y+2 = 0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 1, \hspace{0.5cm} b_1 = -3 , \hspace{0.5cm} c_1 = 2

\displaystyle \text{Similarly, comparing } x+ y -4=0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = 1 , \hspace{0.5cm} c_2 = -4

Therefore,

\displaystyle x_3 = \frac{(-3)(-4)-(1)(2)}{(1)(1)-(1)(-3)} = \frac{12-2}{1+3} = \frac{5}{2}  

\displaystyle y_3 = \frac{(2)(1)-(4)(-1)}{(1)(1)-(1)(-3)} = \frac{2+4}{1+3} = \frac{3}{2}  

\displaystyle \text{Hence the coordinates of the intersection of the lines } x-3y+2 = 0 \text{ and } x+ y -4=0 \text{ are } \Big( \frac{5}{2} , \frac{3}{2} \Big)

\displaystyle \text{Therefore the three vertices of the triangle are } \Big( \frac{1}{3} , \frac{11}{3} \Big) , \displaystyle \Big( \frac{-7}{5} , \frac{1}{5} \Big) , \displaystyle \Big( \frac{5}{2} , \frac{3}{2} \Big)

ii) Given equations:

\displaystyle y (t_1 + t_2) = 2 x + 2 a t_1t_2 … … … … … i)

\displaystyle y (t_2 + t_3) = 2 x + 2 a t_2 t_3 … … … … … ii)

\displaystyle y (t_3 + t_1) = 2 x + 2 at_1 t_3 … … … … … iii)

First consider equations i) and ii):

\displaystyle \text{Here comparing } y (t_1 + t_2) = 2 x + 2 a t_1t_2 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 2, \hspace{0.5cm} b_1 = -(t_1+t_2) , \hspace{0.5cm} c_1 = 2 a t_1t_2

\displaystyle \text{Similarly, comparing } y (t_2 + t_3) = 2 x + 2 a t_2 t_3 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 2, \hspace{0.5cm} b_2 = -(t_2+t_3) , \hspace{0.5cm} c_2 = 2 a t_2 t_3

Therefore,

\displaystyle x_1 = \frac{[-(t_1+t_2)](2at_2t_3)-[-(t_2+t_3)](2at_1t_2)}{(2)[-(t_2+t_3)]-(2)[-(t_1+t_2)]}  

\displaystyle = \frac{at_2(-t_1t_3-t_2t_3+t_2t_1+t_3t_1)}{(t_1-t_3)} = \frac{a{t_2}^2(t_1-t_3)}{(t_1-t_3)} = a{t_2}^2

\displaystyle y_1 = \frac{(2at_1t_2)(2)-(2at_2t_3)(2)}{(2)[-(t_2+t_3)]-(2)[-(t_1+t_2)]} = \frac{4at_2(t_2-t_3)}{2(t_1-t_3)} = 2at_2

\displaystyle \text{Hence the coordinates of the intersection of the lines } y (t_1 + t_2) = 2 x + 2 a t_1t_2 \text{ and } y (t_2 + t_3) = 2 x + 2 a t_2 t_3 \text{ are } ( a{t_2}^2, 2at_2)

Now consider equations ii) and iii):

\displaystyle \text{Here comparing } y (t_2 + t_3) = 2 x + 2 a t_2 t_3 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 2, \hspace{0.5cm} b_1 = -(t_2 + t_3) , \hspace{0.5cm} c_1 = 2 a t_2 t_3

\displaystyle \text{Similarly, comparing } y (t_3 + t_1) = 2 x + 2 at_1 t_3 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 2, \hspace{0.5cm} b_2 = -(t_3 + t_1) , \hspace{0.5cm} c_2 = 2 at_1 t_3

Therefore,

\displaystyle x_2 = \frac{[-(t_2 + t_3)](2at_1t_3)-[-(t_3+t_1)](2at_2t_3)}{(2)[-(t_3+t_1)]-(2)[-(t_2+t_3)]}  

\displaystyle = \frac{at_3(-t_1t_2-t_1t_3+t_2t_3+t_2t_1)}{(t_2-t_1)} = \frac{a{t_3}^2(t_2-t_1)}{(t_2-t_1)} = a{t_3}^2

\displaystyle y_2 = \frac{(2at_2t_3)(2)-(2at_1t_3)(2)}{(2)[-(t_3+t_1)]-(2)[-(t_2+t_3)]} = \frac{4at_3(t_2-t_1)}{2(t_2-t_1)} = 2at_3

\displaystyle \text{Hence the coordinates of the intersection of the lines } y (t_2 + t_3) = 2 x + 2 a t_2 t_3 \text{ and } x-y (t_3 + t_1) = 2 x + 2 at_1 t_3 \text{ are } ( a{t_3}^2, 2at_3)

Now consider equations iii) and i):

\displaystyle \text{Here comparing } y (t_3 + t_1) = 2 x + 2 at_1 t_3 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 2, \hspace{0.5cm} b_1 = -(t_3 + t_1) , \hspace{0.5cm} c_1 = 2 at_1 t_3

\displaystyle \text{Similarly, comparing } y (t_1 + t_2) = 2 x + 2 a t_1t_2 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 2, \hspace{0.5cm} b_2 = -(t_1 + t_2) , \hspace{0.5cm} c_2 = 2 a t_1t_2

Therefore,

\displaystyle x_3 = \frac{[-(t_3 + t_1)](2at_1t_2)-[-(t_1+t_2)](2at_1t_3)}{(2)[-(t_1+t_2)]-(2)[-(t_3+t_1)]}  

\displaystyle = \frac{at_1(-t_2t_3-t_2t_1+t_3t_1+t_3t_2)}{(t_3-t_2)} = \frac{a{t_1}^2(t_3-t_2)}{(t_3-t_2)} = a{t_1}^2

\displaystyle y_3 = \frac{(2at_1t_3)(2)-(2at_1t_2)(2)}{(2)[-(t_1+t_2)]-(2)[-(t_3+t_1)]} = \frac{4at_1(t_3-t_2)}{2(t_3-t_2)} = 2at_1

\displaystyle \text{Hence the coordinates of the intersection of the lines } y (t_3 + t_1) = 2 x + 2 at_1 t_3 \text{ and } y (t_1 + t_2) = 2 x + 2 a t_1t_2 \text{ are } ( a{t_1}^2, 2at_1)

\displaystyle \text{Therefore the three vertices of the triangle are } ( a{t_2}^2, 2at_2) , \displaystyle ( a{t_3}^2, 2at_3) , \displaystyle ( a{t_1}^2, 2at_1)

\displaystyle \\

Question 3: Find the area of the triangle formed by the lines

\displaystyle \text{i) } y = m_1 x + c_1, y = m_2 x + c_2 , and \displaystyle y = m_2 x + c_2

\displaystyle \text{ii) } y=0, x=2 \text{ and } x+2y = 3

\displaystyle \text{iii) } x + y -6 =0, x - 3 y -2=0 \text{ and } 5x-3y+2 = 0

Answer:

i) Given equations:

\displaystyle y = m_1 x + c_1 … … … … … i)

\displaystyle y = m_2 x + c_2 … … … … … ii)

\displaystyle y = m_2 x + c_2 … … … … … iii)

First consider equations i) and ii):

\displaystyle \text{Here comparing } y = m_1 x + c_1 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = m_1, \hspace{0.5cm} b_1 = -1 , \hspace{0.5cm} c_1 = c_1

\displaystyle \text{Similarly, comparing } y = m_2 x + c_2 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = m_2, \hspace{0.5cm} b_2 = -1 , \hspace{0.5cm} c_2 = c_2

Therefore,

\displaystyle x_1 = \frac{(-1)(c_2)-(-1)(c_1)}{(m_1)(-1)-(m_2)(-1)} = \frac{-c_2+c_1}{m_2-m_1} = \frac{c_1-c_2}{m_2-m_1}  

\displaystyle y_1 = \frac{(c_1)(m_2)-(c_2)(m_1)}{(m_1)(-1)-(m_2)(-1)} = \frac{c_1m_2-c_2m_1}{m_2-m_1}  

\displaystyle \text{Hence the coordinates of the intersection of the lines } y = m_1 x + c_1 \text{ and } y = m_2 x + c_2 \text{ are } \Big( \frac{c_1-c_2}{m_2-m_1} , \frac{c_1m_2-c_2m_1}{m_2-m_1} \Big)

Now consider equations ii) and iii):

\displaystyle \text{Here comparing } y = m_2 x + c_2 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = m_2, \hspace{0.5cm} b_1 = -1 , \hspace{0.5cm} c_1 = c_2

\displaystyle \text{Similarly, comparing } y = m_2 x + c_2 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = 0 , \hspace{0.5cm} c_2 = 0

Therefore,

\displaystyle x_2 = \frac{(-1)(0)-(0)(c_2)}{(m_2)(0)-(1)(-1)} = \frac{0-0}{0+1} = 0

\displaystyle y_2 = \frac{(c_2)(1)-(0)(m_2)}{(m_2)(0)-(1)(-1)} = \frac{c_2-0}{0+1} = c_2

\displaystyle \text{Hence the coordinates of the intersection of the lines } y = m_2 x + c_2 \text{ and } y = m_2 x + c_2 \text{ are } (0, c_2)

Now consider equations iii) and i):

\displaystyle \text{Here comparing } y = m_2 x + c_2 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 1, \hspace{0.5cm} b_1 = 0 , \hspace{0.5cm} c_1 = 0

\displaystyle \text{Similarly, comparing } y = m_1 x + c_1 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = m_1, \hspace{0.5cm} b_2 = -1 , \hspace{0.5cm} c_2 = c_1

Therefore,

\displaystyle x_3 = \frac{(0)(c_1)-(1)(0)}{(1)(-1)-(m_1)(0)} = \frac{0-0}{-1+0} = 0

\displaystyle y_3 = \frac{(0)(m_1)-(c_1)(1)}{(1)(-1)-(m_1)(0)} = \frac{0-c_1}{-1+0} = c_1

\displaystyle \text{Hence the coordinates of the intersection of the lines } y = m_2 x + c_2 \text{ and } y = m_1 x + c_1 \text{ are } (0, c_1)

\displaystyle \text{Therefore the three vertices of the triangle are } \Big( \frac{c_1-c_2}{m_2-m_1} , \frac{c_1m_2-c_2m_1}{m_2-m_1} \Big) , \displaystyle (0, c_2) , \displaystyle (0, c_1)

Area of triangle by the above vertices

\displaystyle = \frac{1}{2} \Big | x_1(y_2-y_3) + x_2 ( y_3-y_1) + x_3 ( y_1 - y_2) \Big|

\displaystyle = \frac{1}{2} \Big| \frac{c_1-c_2}{m_2-m_1} \times (c_2-c_1) + 0 \Big( c_1 - \frac{c_1m_2-c_2m_1}{m_2-m_1} \Big) + 0 \Big( \frac{c_1m_2-c_2m_1}{m_2-m_1} - c_2 \Big) \Big|

\displaystyle = \frac{(c_1-c_2)^2}{2 (m_1-m_2)}  

ii) Given equations:

\displaystyle y=0 … … … … … i)

\displaystyle x=2 … … … … … ii)

\displaystyle x+2y = 3 … … … … … iii)

First consider equations i) and ii):

\displaystyle \text{Here comparing } y=0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 0, \hspace{0.5cm} b_1 = 1 , \hspace{0.5cm} c_1 = 0

\displaystyle \text{Similarly, comparing } x=2 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = 0 , \hspace{0.5cm} c_2 = -2

Therefore,

\displaystyle x_1 = \frac{(1)(0)-(-2)(1)}{(0)(0)-(1)(1)} = \frac{0+2}{0-1} = 2

\displaystyle y_1 = \frac{(0)(0)-(0)(1)}{(0)(0)-(1)(1)} = \frac{0-0}{0-1} = 0

\displaystyle \text{Hence the coordinates of the intersection of the lines } y=0 \text{ and } x=2 \text{ are } (2, 0)

Now consider equations ii) and iii):

\displaystyle \text{Here comparing } x=2 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = m_2, \hspace{0.5cm} b_1 = 0 , \hspace{0.5cm} c_1 = -2

\displaystyle \text{Similarly, comparing } x+2y = 3 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = 2 , \hspace{0.5cm} c_2 = -3

Therefore,

\displaystyle x_2 = \frac{(0)(-3)-(2)(-2)}{(1)(2)-(1)(0)} = \frac{0-4}{2-0} = 2

\displaystyle y_2 = \frac{(-2)(1)-(-3)(1)}{(1)(2)-(1)(0)} = \frac{-2+30}{2-0} = \frac{1}{2}

\displaystyle \text{Hence the coordinates of the intersection of the lines } x=2 \text{ and } x+2y = 3 \text{ are } (2, \frac{1}{2} )

Now consider equations iii) and i):

\displaystyle \text{Here comparing } x+2y = 3 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = m_2, \hspace{0.5cm} b_1 = 2 , \hspace{0.5cm} c_1 = -3

\displaystyle \text{Similarly, comparing } y=0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 0, \hspace{0.5cm} b_2 = 1 , \hspace{0.5cm} c_2 = 0

Therefore,

\displaystyle x_3 = \frac{(2)(0)-(1)(-3)}{(1)(1)-(0)(2)} = \frac{0+3}{1-0} = 3

\displaystyle y_3 = \frac{(-3)(0)-(0)(1)}{(1)(1)-(0)(2)} = \frac{0-0}{1-0} = 0

\displaystyle \text{Hence the coordinates of the intersection of the lines } x+2y = 3 \text{ and } y=0 \text{ are } (3, 0)

\displaystyle \text{Therefore the three vertices of the triangle are } (2, 0), ( 2, \frac{1}{2} , (3, 0)

Area of triangle by the above vertices

\displaystyle = \frac{1}{2} \Big | x_1(y_2-y_3) + x_2 ( y_3-y_1) + x_3 ( y_1 - y_2) \Big|

\displaystyle = \frac{1}{2} \Big| 2( \frac{1}{2} -0) + 2 ( 0-0) + 3 ( 0- \frac{1}{2 } ) \Big|

\displaystyle = \frac{1}{2} \Big| 1 - \frac{3}{2} \Big|

\displaystyle = \frac{1}{4} \text{ sq. units }

iii) Given equations:

\displaystyle x + y -6 =0 … … … … … i)

\displaystyle x - 3 y -2=0 … … … … … ii)

\displaystyle 5x-3y+2 = 0 … … … … … iii)

First consider equations i) and ii):

\displaystyle \text{Here comparing } x + y -6 =0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 1, \hspace{0.5cm} b_1 = 1 , \hspace{0.5cm} c_1 = -6

\displaystyle \text{Similarly, comparing } x - 3 y -2=0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = -3 , \hspace{0.5cm} c_2 = -2

Therefore,

\displaystyle x_1 = \frac{(1)(-2)-(-3)(-6)}{(1)(-3)-(1)(1)} = \frac{-2-18}{-3-1} = 5

\displaystyle y_1 = \frac{(-6)(1)-(-2)(1)}{(1)(-3)-(1)(1)} = \frac{-6+2}{-3-1} = 1

\displaystyle \text{Hence the coordinates of the intersection of the lines } x + y -6 =0 \text{ and } x - 3 y -2=0 \text{ are } (5, 1)

Now consider equations ii) and iii):

\displaystyle \text{Here comparing } x - 3 y -2=0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 1, \hspace{0.5cm} b_1 = -3 , \hspace{0.5cm} c_1 = -2

\displaystyle \text{Similarly, comparing } 5x-3y+2 = 0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 5, \hspace{0.5cm} b_2 = -3 , \hspace{0.5cm} c_2 = 2

Therefore,

\displaystyle x_2 = \frac{(-3)(2)-(-3)(-2)}{(1)(-3)-(5)(-3)} = \frac{-6-6}{-3+15} = -1

\displaystyle y_2 = \frac{(-2)(5)-(2)(1)}{(1)(-3)-(5)(-3)} = \frac{-10-2}{-3+15} = -1

\displaystyle \text{Hence the coordinates of the intersection of the lines } x - 3 y -2=0 \text{ and } 5x-3y+2 = 0 \text{ are } (-1, -1)

Now consider equations iii) and i):

\displaystyle \text{Here comparing } 5x-3y+2 = 0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 5, \hspace{0.5cm} b_1 = -3 , \hspace{0.5cm} c_1 = 2

\displaystyle \text{Similarly, comparing } x + y -6 =0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = 1 , \hspace{0.5cm} c_2 = -6

Therefore,

\displaystyle x_3 = \frac{(-3)(-6)-(1)(2)}{(5)(1)-(1)(-3)} = \frac{18-2}{5+3} = 2

\displaystyle y_3 = \frac{(2)(1)-(-6)(5)}{(5)(1)-(1)(-3)} = \frac{2+30}{5+3} = 4

\displaystyle \text{Hence the coordinates of the intersection of the lines } 5x-3y+2 = 0 \text{ and } x + y -6 =0 \text{ are } (2, 4)

\displaystyle \text{Therefore the three vertices of the triangle are } ( 5, 1), (-1, -1), (2, 4)

Area of triangle by the above vertices

\displaystyle = \frac{1}{2} \Big | x_1(y_2-y_3) + x_2 ( y_3-y_1) + x_3 ( y_1 - y_2) \Big|

\displaystyle = \frac{1}{2} \Big| 5(-1-4) -1(4-1)+2(1+1) \Big|

\displaystyle = \frac{1}{2} \Big| -25-3+4 \Big|

\displaystyle = \frac{1}{2} \Big| -24 \Big|

\displaystyle = 12 \text{ sq. units }

\displaystyle \\

Question 4: Find the equations of the medians of a triangle, the equations of whose sides are: \displaystyle 3 x + 2y + 6=0 , \displaystyle 2 x _5 y + 4=0 \text{ and } x-3y-6=0

Answer:

Given equations:

\displaystyle 3 x + 2y + 6=0 … … … … … i)

\displaystyle 2 x _5 y + 4=0 … … … … … ii)

\displaystyle x-3y-6=0 … … … … … iii)

Solving i) and ii) we get \displaystyle A ( x_1, y_1) = ( -2, 0)

Solving ii) and iii) we get \displaystyle B ( x_2, y_2) = ( -42, -16)

Solving iii) and i) we get \displaystyle C ( x_3, y_3) = ( \frac{-6}{11} , \frac{-24}{11} )

Midpoint \displaystyle (D) of \displaystyle AB = \Big( \frac{-2-42}{2} , \frac{0-16}{2} \Big) = (-22, -8)

Therefore the equation of median \displaystyle CD :

\displaystyle y - ( -8) = \Big[ \frac{-8-(\frac{-24}{11} )}{-22-( \frac{-6}{11} ) } \Big] [x-(-22)]

\displaystyle \Rightarrow y+8 = \frac{16}{59} (x+22)

\displaystyle \Rightarrow 16x - 59y - 120 = 0

Midpoint \displaystyle (E) of \displaystyle BC = \Big( \frac{-42-\frac{6}{11}}{2} , \frac{-16-\frac{24}{11}}{2} \Big) = ( \frac{-234}{11} , \frac{-100}{11} )

Therefore the equation of median \displaystyle AE :

\displaystyle y - ( 0) = \Big[ \frac{\frac{-100}{11} - 0}{\frac{-234}{11}-(-2) } \Big] [x-(-2)]

\displaystyle \Rightarrow y+8 = \frac{-100}{-234+22} (x+2)

\displaystyle \Rightarrow 25x - 53y +50 = 0

Midpoint \displaystyle (F) of \displaystyle AC = \Big( \frac{-2-\frac{6}{11}}{2} , \frac{0-\frac{24}{11}}{2} \Big) = ( \frac{-14}{11} , \frac{-12}{11} )

Therefore the equation of median \displaystyle BF :

\displaystyle y - ( -16 ) = \Big[ \frac{\frac{-12}{11} - (-16)}{\frac{-14}{11}-(-42) } \Big] [x-(-42)]

\displaystyle \Rightarrow y+16 = \frac{41}{112} (x+42)

\displaystyle \Rightarrow 41x - 112y -70 = 0

Hence the equations of the three medians are \displaystyle 16x - 59y - 120 = 0 , \displaystyle 25x - 53y +50 = 0 \text{ and } 41x - 112y -70 = 0

\displaystyle \\

Question 5: Prove that the lines \displaystyle y = \sqrt{3}+1, y = 4 \text{ and } y = - \sqrt{3}x+2 form an equilateral triangle.

Answer:

Given equations:

\displaystyle y = \sqrt{3}+1 … … … … … i)

\displaystyle y = 4 … … … … … ii)

\displaystyle y = - \sqrt{3}x+2 … … … … … iii)

Solving i) and ii) we get \displaystyle A ( x_1, y_1) = ( \sqrt{3}, 4)

Solving ii) and iii) we get \displaystyle B ( x_2, y_2) = ( \frac{-2\sqrt{3}}{3}, 4)

Solving iii) and i) we get \displaystyle C ( x_3, y_3) = (\frac{\sqrt{3}}{6}, \frac{3}{2} )

\displaystyle \text{Length of } AB = \sqrt{ (4-4)^2 + ( \frac{-2\sqrt{3}}{3} - \sqrt{3})^2} = \frac{5\sqrt{3}}{5} \text{ units }

\displaystyle \text{Length of } BC = \sqrt{ (\frac{3}{2}-4)^2 + ( \frac{\sqrt{3}}{6} + \frac{2\sqrt{3}}{3} )^2} = \sqrt{ \frac{25}{4} + \frac{75}{36} } = \frac{5\sqrt{3}}{5} \text{ units }

\displaystyle \text{Length of } CA = \sqrt{ (4 - \frac{3}{2})^2 + ( \sqrt{3} - \frac{\sqrt{3}}{6} )^2} = \sqrt{ \frac{75}{36} + \frac{25}{4} } = \frac{5\sqrt{3}}{5} \text{ units }

\displaystyle \text{Since } AB = BC = CA = \frac{5\sqrt{3}}{5}  

Therefore the \displaystyle \triangle ABC is an equilateral triangle.

 \displaystyle \\

Question 6: Classify the following pairs of lines as co-incident, parallel or intersecting:

\displaystyle \text{i) } 2x+y-1=0 \text{ and } 3x+2y+5=0 \hspace{1.0cm} \text{ii) } x-y=0 \text{ and } 3x-3y+5=0

\displaystyle \text{iii) } 3x+2y-4=0 \text{ and } 6x +4y-8=0

Answer:

\displaystyle \text{i) } 2x+y-1=0 \text{ and } 3x+2y+5=0

We will transform the equation into the form \displaystyle y = mx + c \text{. Therefore : }

\displaystyle 2x+y-1=0 \Rightarrow y = - 2x + 1 \Rightarrow \text{ Slope } (m_1) = -2

\displaystyle 3x+2y+5=0 \Rightarrow y = - \frac{3}{2} x - \frac{5}{2} \Rightarrow \text{ Slope } (m_2) = - \frac{3}{2}  

\displaystyle \text{Since } m_1 \neq m_2 , the lines are intersecting.

\displaystyle \text{ii) } x-y=0 \text{ and } 3x-3y+5=0

We will transform the equation into the form \displaystyle y = mx + c \text{. Therefore : }

\displaystyle x-y=0 \Rightarrow y = x \Rightarrow \text{ Slope } (m_1) = 1

\displaystyle 3x-3y+5=0 \Rightarrow y = x + \frac{5}{3} \Rightarrow \text{ Slope } (m_2) = 1

\displaystyle \text{Since } m_1 = m_2 , and the intercepts are different, therefore the lines are parallel.

\displaystyle \text{iii) } 3x+2y-4=0 \text{ and } 6x +4y-8=0

We will transform the equation into the form \displaystyle y = mx + c \text{. Therefore : }

\displaystyle 3x+2y-4=0 \Rightarrow y = - \frac{3}{2} x + 2 \Rightarrow \text{ Slope } (m_1) = - \frac{3}{2}  

\displaystyle 6x +4y-8=0 \Rightarrow y = - \frac{3}{2} x + 2 \Rightarrow \text{ Slope } (m_2) = - \frac{3}{2}  

\displaystyle \text{Since } m_1 = m_2 , the lines are parallel. Their intercepts are also the same. Hence we can say that the lines are coincident line.

\displaystyle \\

Question 7: Find the equation of the line joining the point \displaystyle (3, 5) to the point of intersection of the lines \displaystyle 4x+y-1=0 \text{ and } 7x-3y-35=0

Answer:

\displaystyle \text{Given } 4x+y-1=0 \text{ and } 7x-3y-35=0

\displaystyle \text{Here comparing } 4x+y-1=0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 4, \hspace{0.5cm} b_1 = 1 , \hspace{0.5cm} c_1 = -1

\displaystyle \text{Similarly, comparing } 7x-3y-35=0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 7, \hspace{0.5cm} b_2 = -3 , \hspace{0.5cm} c_2 = -35

Therefore,

\displaystyle x_1 = \frac{(1)(-35)-(-3)(-1)}{(4)(-3)-(7)(1)} = \frac{-35-3}{-12-7} = \frac{-38}{-19} = 2

\displaystyle y_1 = \frac{(-1)(7)-(-35)(4)}{(4)(-3)-(7)(1)} = \frac{-7+140}{-12-7} = \frac{133}{-19} = -7

Therefore the equation of the line passing through \displaystyle (3, 5) \text{ and } ( 2, -7) is:

\displaystyle y - 5 = \frac{-7-5}{2-3} (x-3)

\displaystyle \Rightarrow y - 5 = 12x - 36

\displaystyle \Rightarrow 12 x - y - 31 = 0

\displaystyle \\

Question 8: Find the equation of a line passing through the point of intersection of the lines \displaystyle 4x-7y-3=0 \text{ and } 2x-3y+1 = 0 that has equal intercept on x-axis.

Answer:

\displaystyle \text{Given } 4x-7y-3=0 \text{ and } 2x-3y+1 = 0

\displaystyle \text{Here comparing } 4x-7y-3=0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 4, \hspace{0.5cm} b_1 = -7 , \hspace{0.5cm} c_1 = -3

\displaystyle \text{Similarly, comparing } 2x-3y+1 = 0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 2, \hspace{0.5cm} b_2 = -3 , \hspace{0.5cm} c_2 = 1

Therefore,

\displaystyle x_1 = \frac{(-7)(1)-(-3)(-3)}{(4)(-3)-(2)(-7)} = \frac{-7-9}{-12+14} = \frac{-16}{2} = -8

\displaystyle y_1 = \frac{(-3)(2)-(1)(4)}{(4)(-3)-(2)(-7)} = \frac{-6-4}{-12+14} = -5

\displaystyle \text{Therefore } (x_1, y_1) = ( -8, -5)

If the intercepts of the line are equal, then the equation of the line is:

\displaystyle \frac{x}{a} + \frac{y}{a} = 1 \hspace{0.5cm} \Rightarrow x + y = a

This line passes through \displaystyle (-8, -5) , therefore

\displaystyle -8 - 5 = a \hspace{0.5cm} \Rightarrow a = - 13

\displaystyle \text{Therefore equation of line is } x + y + 13 = 0

Question 9: Show that the area of the triangle formed by the lines \displaystyle y = m_1 x, \ \ y+m_2 x \text{ and } y = c is equal to \displaystyle \frac{c^2}{4} ( \sqrt{33}+\sqrt{11}) , \text{ where } m_1 \text{ and } m_2 are roots of the equation \displaystyle x^2 + ( \sqrt{3}+2) x + \sqrt{3}-1 = 0

Answer:

\displaystyle \text{Given equations: } y = m_1 x, \ \ y+m_2 x \text{ and } y = c

\displaystyle \text{The vertices of the triangle are } A(0,0), B ( \frac{c}{m_1} , c), C( \frac{c}{m_2} , c)

\displaystyle \text{Area of a triangle } = \frac{1}{2} [x_1(y_2-y_3) + x_2( y_3-y_1) + y_3( y_1-y_2) ]

\displaystyle = \frac{1}{2} \Big[ 0(c-c) + \frac{c}{m_1} ( c-0) + \frac{c}{m_2} ( 0 - c) \Big]

\displaystyle = \frac{1}{2} \Big [ \frac{c^2}{m_1} - \frac{c^2}{m_2} \Big ]

\displaystyle = \frac{c^2}{2} \Big [ \frac{m_2-m_2}{m_1m_2} \Big]

Now \displaystyle m_1, m_2 \text{ are the roots of } x^2 + ( \sqrt{3}+2) x + \sqrt{3}-1 = 0 , therefore

\displaystyle m_1+m_2 = -(\sqrt{3}+2)

\displaystyle m_1m_2 = (\sqrt{3}-1)

\displaystyle (m_2-m_1)^2 = (m_2+m_1)^2 - 4 m_1m_2

\displaystyle = [ -(\sqrt{3}+2)]^2 - 4 [\sqrt{3}-1] = 3 + 4 + 4 \sqrt{3} - 4\sqrt{3} + 4 = 11

\displaystyle m_2-m_1 = \sqrt{11}

Substituting we get

\displaystyle \text{Area of triangle } = \frac{1}{2} \Big [ \frac{ \sqrt{11}}{\sqrt{3}-1} \Big ]

\displaystyle = \frac{1}{2} \Big [ \frac{ \sqrt{11}}{\sqrt{3}-1} \Big ] \times \frac{\sqrt{3}+1}{\sqrt{3}+1}  

\displaystyle = \frac{c^2}{4} [ \sqrt{33}+ \sqrt{11} ] . Hence proved.

\displaystyle \\

Question 10: If the straight line \displaystyle \frac{x}{a} + \frac{y}{b} =1 passes through the intersection of the lines \displaystyle x+y = 3 , and \displaystyle 2x -3y = 1 and is parallel to \displaystyle x-y - 6 = 0 , find \displaystyle a \text{ and } b .

Answer:

\displaystyle \text{Given } x+y = 3 \text{ and } 2x -3y = 1

\displaystyle \text{Here comparing } x+y = 3 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 1, \hspace{0.5cm} b_1 = 1 , \hspace{0.5cm} c_1 = -3

\displaystyle \text{Similarly, comparing } 2x -3y = 1 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 2, \hspace{0.5cm} b_2 = -3 , \hspace{0.5cm} c_2 = -1

Therefore,

\displaystyle x_1 = \frac{(1)(-1)-(-3)(-3)}{(1)(-3)-(2)(1)} = \frac{-1-9}{-3-2} = \frac{-10}{-5} = 2

\displaystyle y_1 = \frac{(-3)(2)-(-1)(1)}{(1)(-3)-(2)(1)} = \frac{-6+1}{-3-2} = \frac{-5}{-5} = 1

\displaystyle \text{Therefore } (x_1, y_1) = ( 2, 1)

If \displaystyle \frac{x}{a} + \frac{y}{b} =1 passes through \displaystyle (2, 1) , then

\displaystyle \frac{1}{a} + \frac{1}{b} =1 … … … … … i)

\displaystyle \text{Since } \frac{1}{a} + \frac{1}{b} =1 is parallel to \displaystyle x-y - 6 = 0 , the slope of both the lines is the same.

\displaystyle \therefore - \frac{b}{a} = 1 \Rightarrow - b = a … … … … … ii)

Substituting ii) in i) we get

\displaystyle \frac{2}{a} + \frac{1}{-1} = 1 \Rightarrow \frac{1}{a} = 1 \Rightarrow a = 1

\displaystyle \therefore b = - 1

\displaystyle \\

Question 11: Find the orthocenter of the triangle the equations of whose sides are \displaystyle x+y=1, \ \ 2x+3y = 6 \text{ and } 4x-y+4 = 0

Answer:

Given equations:

\displaystyle x+y=1 … … … … … i)

\displaystyle 2x+3y = 6 … … … … … ii)

\displaystyle 4x-y+4 = 0 … … … … … iii)

Solving i) and ii) we get \displaystyle ( x_1, y_1) = ( - 3, 4)

Solving i) and iii) we get \displaystyle A ( x_2, y_2) = ( \frac{-3}{5} , \frac{8}{5} )

\displaystyle \text{Slope of } BC = \frac{-2}{3} \displaystyle \text{Therefore slope of } AD = \frac{-1}{(-2/3)} = \frac{3}{2}  

Therefore equation of \displaystyle AD :

\displaystyle y - \frac{8}{5} = \frac{3}{2} ( x + \frac{3}{5} )

\displaystyle \Rightarrow 5y - 8 = \frac{15}{2} (x+ \frac{3}{5} )

\displaystyle \Rightarrow 50y - 80 = 15 ( 5x + 3)

\displaystyle \Rightarrow 75x - 50y +125 = 0

\displaystyle \Rightarrow 3x - 2y +5 = 0 … … … … … iv)

\displaystyle \text{Slope of } AC = 4 \displaystyle \text{Therefore slope of } BE = \frac{-1}{4}  

Equation of \displaystyle BE :

\displaystyle y-4 = \frac{-1}{4} ( x+3)

\displaystyle \Rightarrow 4y - 16 = - x - 3

\displaystyle \Rightarrow x + 4y - 13 = 0 … … … … … v)

Now solving equation iv) and v) i.e. \displaystyle 3x - 2y +5 = 0 \text{ and } x + 4y - 13 = 0

\displaystyle \text{Here comparing } 3x - 2y +5 = 0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 3, \hspace{0.5cm} b_1 = -2 , \hspace{0.5cm} c_1 = 5

\displaystyle \text{Similarly, comparing } x + 4y - 13 = 0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = 4 , \hspace{0.5cm} c_2 = -13

Therefore,

\displaystyle x_1 = \frac{(-2)(-13)-(4)(5)}{(3)(4)-(1)(-2)} = \frac{26-20}{12+2} = \frac{3}{7}  

\displaystyle y_1 = \frac{(5)(1)-(-13)(3)}{(3)(4)-(1)(-2)} = \frac{5+39}{12+2} = \frac{22}{7}  

\displaystyle \text{Therefore } (x_1, y_1) = ( \frac{3}{7} , \frac{22}{7} )

\displaystyle \\

Question 12: Three sides \displaystyle AB,BC \text{ and } CA of a triangle \displaystyle ABC \text{ are } 5x-3y+2=0 , \ \ x-3y-2=0 \text{ and } x+y-6=0 respectively. Find the equation of the altitude through the vertex \displaystyle A .

Answer:

\displaystyle \text{Given } 5x-3y+2=0 \text{ and } x+y-6=0

\displaystyle \text{Here comparing } 5x-3y+2=0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 5, \hspace{0.5cm} b_1 = -3 , \hspace{0.5cm} c_1 = 2

\displaystyle \text{Similarly, comparing } x+y-6=0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 1, \hspace{0.5cm} b_2 = 1 , \hspace{0.5cm} c_2 = -6

Therefore,

\displaystyle x_1 = \frac{(-3)(-6)-(1)(2)}{(5)(1)-(1)(-3)} = \frac{18-2}{5+3} = \frac{16}{8} = 2

\displaystyle y_1 = \frac{(2)(1)-(-6)(5)}{(5)(1)-(1)(-3)} = \frac{2+30}{8} = 4

Therefore point of intersection \displaystyle A(x_1, y_1) = ( 2, 4)

\displaystyle \text{Slope of } BC = \frac{1}{3}  

\displaystyle \text{Therefore slope of } AD = \frac{-1}{(1/3)} = -3

Therefore the equation of \displaystyle AD :

\displaystyle y - 4 = - 3 ( x - 2) \hspace{0.5cm} \Rightarrow 3x + y - 10 = 0

\displaystyle \\

Question 13: Find the coordinates of the orthocenter of the, triangle whose vertices are \displaystyle (- 1, 3), (2, -1) \text{ and } (0,0) .

Answer:

\displaystyle \text{Let } A (0,0), B(-1,3) \text{ and } C(2, -1)

\displaystyle \text{Slope of } BC = \frac{-1-3}{2-(-1)} = \frac{-4}{3}  

\displaystyle \text{Therefore slope of } AD = \frac{-1}{(-4/3)} = \frac{3}{4}  

Therefore equation of \displaystyle AD :

\displaystyle y = 0 = \frac{3}{4} ( x - 0) \hspace{0.5cm} \Rightarrow 3x - 4y = 0 … … … … … i)

\displaystyle \text{Slope of } AC = \frac{-1-0}{2-0} = \frac{-1}{2}  

\displaystyle \text{Therefore slope of } BE = \frac{-1}{(-1/2)} = 2

Therefore equation of \displaystyle BE :

\displaystyle y - 3 = 2 [ x - (-1) ] \hspace{0.5cm} \Rightarrow 2x - y +5 = 0 … … … … … ii)

Now solve i) and \displaystyle \text{ii) } 3x - 4y = 0 \text{ and } 2x - y +5 = 0

\displaystyle \text{Here comparing } 3x - 4y = 0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 3, \hspace{0.5cm} b_1 = -4 , \hspace{0.5cm} c_1 = 0

\displaystyle \text{Similarly, comparing } 2x - y +5 = 0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 2, \hspace{0.5cm} b_2 = -1 , \hspace{0.5cm} c_2 = 5

Therefore,

\displaystyle x_1 = \frac{(-4)(5)-(-1)(0)}{(3)(-1)-(2)(-4)} = \frac{-20-0}{-3+8} = -3

\displaystyle y_1 = \frac{(0)(2)-(5)(3)}{(3)(-1)-(2)(-4)} = \frac{0-15}{-3+8} = -3

Therefore the orthocenter is \displaystyle (x_1, y_1) = ( -4, -3)

\displaystyle \\

Question 14: Find the coordinates of the incentre and centroid of the triangle whose sides have the equations \displaystyle 3x -4y =0, \ \ 12y +5x =0 \text{ and } y -15 =0 .

Answer:

Given:

\displaystyle AB: \hspace{0.5cm} 3x -4y =0 … … … … … i)

\displaystyle BC: \hspace{0.5cm} 12y +5x =0 … … … … … ii)

\displaystyle CA: \hspace{0.5cm} y -15 =0 … … … … … iii)

Solving i) and ii) i.e. \displaystyle 3x -4y =0 \text{ and } 12y +5x =0

\displaystyle \text{Here comparing } 3x -4y =0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 3, \hspace{0.5cm} b_1 = -4 , \hspace{0.5cm} c_1 = 0

\displaystyle \text{Similarly, comparing } 12y +5x =0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 5, \hspace{0.5cm} b_2 = 12 , \hspace{0.5cm} c_2 = 0

Therefore,

\displaystyle x_1 = \frac{(-4)(0)-(12)(0)}{(3)(12)-(5)(-4)} = \frac{0-0}{36+20} = 0

\displaystyle y_1 = \frac{(0)(5)-(0)(3)}{(3)(12)-(5)(-4)} = \frac{0-0}{36+20} = 0

Therefore the point of intersection is \displaystyle B(x_1, y_1) = ( 0,0)

Solving ii) and iii) i.e. \displaystyle 12y +5x =0 \text{ and } y -15 =0

\displaystyle \text{Here comparing } 12y +5x =0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 5, \hspace{0.5cm} b_1 = 12 , \hspace{0.5cm} c_1 = 0

\displaystyle \text{Similarly, comparing } y -15 =0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 0, \hspace{0.5cm} b_2 = 1 , \hspace{0.5cm} c_2 = -15

Therefore,

\displaystyle x_2 = \frac{(12)(-15)-(1)(0)}{(5)(1)-(0)(12)} = \frac{-180-0}{5-0} = -36

\displaystyle y_2 = \frac{(0)(0)-(-15)(5)}{(5)(1)-(0)(12)} = \frac{0+75}{5-0} = 15

Therefore the point of intersection is \displaystyle C(x_2, y_2) = ( -36,15)

Solving iii) and i) i.e. \displaystyle y -15 =0 \text{ and } 3x -4y =0

\displaystyle \text{Here comparing } y -15 =0 \text{ with } a_1x+b_1y+c_1 = 0 \text{ we get }

\displaystyle a_1 = 0, \hspace{0.5cm} b_1 = 1 , \hspace{0.5cm} c_1 = -15

\displaystyle \text{Similarly, comparing } 3x -4y =0 \text{ with } a_2x+b_2y+c_2 = 0 \text{ we get }

\displaystyle a_2 = 3, \hspace{0.5cm} b_2 = -4 , \hspace{0.5cm} c_2 = 0

Therefore,

\displaystyle x_3 = \frac{(1)(0)-(-4)(-15)}{(0)(-4)-(3)(1)} = \frac{0-60}{0-3} = 20

\displaystyle y_3 = \frac{(-15)(3)-(0)(0)}{(0)(-4)-(3)(1)} = \frac{-45-0}{0-3} = 15

Therefore the point of intersection is \displaystyle A(x_3, y_3) = ( 20, 15)

Now we need to find the lengths of the lines \displaystyle AB, BC \text{ and } CA .

\displaystyle AB = \sqrt{ ( 20-0)^2 + (15-0 )^2 } = \sqrt{625} = 25

\displaystyle BC = \sqrt{ ( 0+36)^2 + (0-15 )^2 } = \sqrt{1521} = 39

\displaystyle CA = \sqrt{ ( 20+36)^2 + (15-15 )^2 } = \sqrt{3136} = 56

Hence \displaystyle a = BC = 39, \hspace{0.5cm} b = CA = 56, \hspace{0.5cm} c = AB = 25

Also \displaystyle A(x_3, y_3) = ( 20, 15), \hspace{0.5cm} B(x_1, y_1) = ( 0,0), \hspace{0.5cm} C(x_2, y_2) = ( -36,15)

Therefore Centroid \displaystyle = \Big( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} \Big)

\displaystyle = \Big( \frac{20+0-36}{3} , \frac{15+0+15}{3} \Big) = \Big( \frac{-16}{3} , 10 \Big)

Incenter \displaystyle = \Big( \frac{ax_1+bx_2+cx_3}{a+b+c} , \frac{ay_1+by_2+cy_3}{a+b+c} \Big)

\displaystyle = \Big( \frac{39 \times 20 + 56 \times 0 - 25 \times 36}{39+56+25} , \frac{39 \times 15 + 56 \times 0 + 25 \times 15}{39+56+25} \Big)

\displaystyle = \Big( \frac{-120}{120} , \frac{960}{120} \Big) = (-1, 8)

\displaystyle \\

Question 15: Prove that the lines \displaystyle \sqrt{3}x + y =0 , \ \sqrt{3}y + x = 0 , \ \sqrt{3}x+y = 1 \text{ and } \sqrt{3}y+1 = 1 form a rhombus.

Answer:

Given:

\displaystyle AB: \hspace{0.5cm} \sqrt{3}x + y =0 … … … … … i)

\displaystyle BC: \hspace{0.5cm} \sqrt{3}y + x = 0 … … … … … ii)

\displaystyle CD: \hspace{0.5cm} \sqrt{3}x+y = 1 … … … … … iii)

\displaystyle DA: \hspace{0.5cm} \sqrt{3}x+y = 1 … … … … … iv)

Solving i) and ii) we get \displaystyle B(x_1, y_1) = ( 0,0)

Solving ii) and iii) we get \displaystyle C(x_2, y_2) = \Big( \frac{\sqrt{3}}{2} , \frac{-1}{2} \Big)

Solving iii) and iv) we get \displaystyle D(x_3, y_3) = \Big( \frac{\sqrt{3} -1}{2} , \frac{\sqrt{3} -1}{2} \Big)

Solving iv) and v) we get \displaystyle A(x_4, y_4) = \Big( \frac{-1}{2} , \frac{\sqrt{3}}{2} \Big)

Now let’s find the lengths of the sides:

\displaystyle AB = \sqrt{ ( 0 - \frac{1}{2} )^2 + ( 0 - \frac{\sqrt{3}}{2} )^2 } = 1

\displaystyle BC = \sqrt{ ( \frac{\sqrt{3}}{2} - 0 )^2 + ( \frac{-1}{2} - 0 )^2 } = 1

\displaystyle CD = \sqrt{ ( \frac{\sqrt{3} -1}{2} - \frac{\sqrt{3}}{2} )^2 + (\frac{\sqrt{3} -1}{2} + \frac{1}{2} )^2 } = 1

\displaystyle DA = \sqrt{ ( \frac{\sqrt{3} -1}{2} + \frac{1}{2} )^2 + (\frac{\sqrt{3} -1}{2} - \frac{\sqrt{3}}{2} )^2 } = 1

Since the four lines are equal, ABCD is a rhombus.

\displaystyle \\

Question 16: Find the equation of the line passing through the intersection of the lines \displaystyle 2x+y = 5 \text{ and } x+3y+8 = 0 and parallel to line \displaystyle 3x+4y =7 .

Answer:

\displaystyle \text{Given lines: } 2x+y = 5 \text{ and } x+3y+8 = 0

Solving the above lines gives us the point of intersection as

\displaystyle (x_1, y_1) = ( \frac{23}{5} , \frac{-21}{5} )

Slope of line \displaystyle 3x+4y =7 is \displaystyle \frac{-3}{4}  

Therefore the slope of the required line is \displaystyle \frac{-3}{4} as they are parallel

Therefore the equation of the required line:

\displaystyle y - ( \frac{-21}{5} ) = \frac{-3}{4} ( x - \frac{23}{5} )

\displaystyle \Rightarrow y + \frac{21}{5} = - \frac{3}{4} x + \frac{69}{20}  

\displaystyle \Rightarrow 20y + 15 x = - 15

\displaystyle \Rightarrow 15x + 20 y + 15 = 0

\displaystyle \\

Question 17: Find the equation of the straight line passing through the intersection of the lines \displaystyle 5x-6y-1=0 \text{ and } 3x+2y+5 =0 and perpendicular to line \displaystyle 3x-5y+11=0 .

Answer:

\displaystyle \text{Given lines: } 5x-6y-1=0 \text{ and } 3x+2y+5 =0

Solving the above equations, we get the point of intersection \displaystyle (x_1, y_1) = ( -1, -1) .

Slope of the line \displaystyle 3x-5y+11=0 is \displaystyle \frac{3}{5}  

Therefore the slope of the line perpendicular to line \displaystyle 3x-5y+11=0 is \displaystyle \frac{-5}{3}  

Therefore the equation of the required line:

\displaystyle y - ( -1) = \frac{-5}{3} [ x - ( -1)]

\displaystyle \Rightarrow 3y + 3 = - 5x - 5

\displaystyle \Rightarrow 5x + 3y + 8 = 0