Note: We know that the equations of two lines passing through \displaystyle ( x_1, y_1) and making and angle \displaystyle \alpha with the given line \displaystyle y = mx + c are

\displaystyle y - y_1 = \Big( \frac{m \pm \tan \alpha }{1 \mp m \tan \alpha} \Big) ( x - x_1)

Question 1: Find the equation of the straight lines passing through the origin and making an angle of \displaystyle 45^{\circ} with the straight line \displaystyle \sqrt{3} x + y =11 .

Answer:

We know that the equations of two lines passing through \displaystyle ( x_1, y_1) and making and angle \displaystyle \alpha with the given line \displaystyle y = mx + c are

\displaystyle y - y_1 = \Big( \frac{m \pm \tan \alpha }{1 \mp m \tan \alpha} \Big) ( x - x_1)

\displaystyle \text{Here } x_1 = 0, \hspace{0.5cm} y_1 = 0 , \hspace{0.5cm} \alpha = 45^{\circ} \hspace{0.5cm} m = -\sqrt{3}

Therefore the equation are:

\displaystyle y - 0 = \Big( \frac{-\sqrt{3} + \tan 45^{\circ} }{1 + \sqrt{3} \tan 45^{\circ}} \Big) ( x - 0)

\displaystyle \Rightarrow y = \Big( \frac{-\sqrt{3} + 1 }{1 + \sqrt{3} } \Big) x

\displaystyle \Rightarrow y = \Big( \frac{-\sqrt{3} + 1 }{1 + \sqrt{3} } \times \frac{\sqrt{3} - 1}{\sqrt{3} -1} \Big) x

\displaystyle \Rightarrow y = \Big( \frac{3 +1 - 2\sqrt{2} }{3+1 } \Big) x

\displaystyle \Rightarrow y = ( \sqrt{3} - 2) x … … … … … i)

\displaystyle y - 0 = \Big( \frac{-\sqrt{3} - \tan 45^{\circ} }{1 - \sqrt{3} \tan 45^{\circ}} \Big) ( x - 0)

\displaystyle \Rightarrow y = \Big( \frac{-\sqrt{3} - 1 }{1 - \sqrt{3} } \Big) x

\displaystyle \Rightarrow y = \Big( \frac{\sqrt{3} + 1 }{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} +1} \Big) x

\displaystyle \Rightarrow y = \Big( \frac{3 +1 + 2\sqrt{2} }{3-1 } \Big) x

\displaystyle \Rightarrow y = ( \sqrt{3} + 2) x … … … … … ii)

\displaystyle \text{Therefore } y = ( \sqrt{3} - 2) x \text{ and } y = ( \sqrt{3} + 2) x \text{ are the two equations. }

\displaystyle \\

Question 2: Find the equations to the straight lines which pass through the origin and are inclined at an angle of \displaystyle 75^{\circ} to the straight line \displaystyle x + y +\sqrt{3} (y -x) =a .

Answer:

Given equation:

\displaystyle x+ y + \sqrt{3}( y - x) = a \Rightarrow ( \sqrt{3}+1) y = ( \sqrt{3}-1) x + a \Rightarrow y = \frac{\sqrt{3}-1}{\sqrt{3}+1} x + \frac{a}{\sqrt{3}+1}  

\displaystyle \therefore \text{ Slope } m = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1} = 2 - \sqrt{3}

\displaystyle \text{Here } x_1 = 0, \hspace{0.5cm} y_1 = 0 , \hspace{0.5cm} \alpha = 75^{\circ} \hspace{0.5cm} m = 2-\sqrt{3}

Therefore the equations are:

\displaystyle y - 0 = \Big( \frac{(2-\sqrt{3}) + \tan 75^{\circ} }{1 -( 2 - \sqrt{3}) \tan 75^{\circ}} \Big) ( x - 0)

\displaystyle \Rightarrow y = \Big( \frac{(2-\sqrt{3}) + ( 2 + \sqrt{3}) }{1 - (2 - \sqrt{3})(2+\sqrt{3} } \Big) x

\displaystyle \Rightarrow y = \Big( \frac{4 }{0 } \Big) x

\displaystyle \Rightarrow x = 0 … … … … … i)

\displaystyle y - 0 = \Big( \frac{(2-\sqrt{3}) - \tan 75^{\circ} }{1 +( 2 - \sqrt{3}) \tan 75^{\circ}} \Big) ( x - 0)

\displaystyle \Rightarrow y = \Big( \frac{(2-\sqrt{3}) - ( 2 + \sqrt{3}) }{1 + (2 - \sqrt{3})(2+\sqrt{3} } \Big) x

\displaystyle \Rightarrow y = \Big( \frac{-2\sqrt{3} }{1+1 } \Big) x

\displaystyle \Rightarrow y + \sqrt{3} x = 0 … … … … … ii)

\displaystyle \text{Therefore } x = 0 \text{ and } y + \sqrt{3} x = 0 \text{ are the two equations. }

\displaystyle \\

Question 3: Find the equations of the straight lines passing through \displaystyle (2, - 1) and making an angle of \displaystyle 45^{\circ} with the line \displaystyle 6x + 5 y - 8 = 0 .

Answer:

Given equation:

\displaystyle 6x + 5 y - 8 = 0 \Rightarrow y = \frac{-6}{5} x + \frac{4}{3} \therefore \text{ Slope } m = \frac{-6}{5}  

\displaystyle \text{Here } x_1 = 2, \hspace{0.5cm} y_1 = 2 , \hspace{0.5cm} \alpha = 45^{\circ} \hspace{0.5cm} m = \frac{-6}{5}  

Therefore the equations are:

\displaystyle y - (-1) = \Big( \frac{ \frac{-6}{5} + \tan 45^{\circ} }{1 - ( \frac{-6}{5}) \tan 45^{\circ}} \Big) ( x - 2)

\displaystyle \Rightarrow y +1 = \Big( \frac{ \frac{-6}{5} + 1 }{1 + ( \frac{6}{5}) } \Big) ( x - 2)

\displaystyle \Rightarrow y + 1 = \frac{-1}{11} ( x- 2)

\displaystyle \Rightarrow x + 11y + 9 = 0 … … … … … i)

\displaystyle y - (-1) = \Big( \frac{\frac{-6}{5} - \tan 45^{\circ} }{1 - ( \frac{6}{5}) \tan 45^{\circ}} \Big) ( x - 2)

\displaystyle \Rightarrow y +1 = \Big( \frac{\frac{-6}{5} - 1 }{1 - ( \frac{6}{5}) } \Big) ( x - 2)

\displaystyle \Rightarrow y + 1 = \frac{-11}{-1} ( x- 2)

\displaystyle \Rightarrow 11x-y-23 = 0 … … … … … ii)

\displaystyle \text{Therefore } x + 11y + 9 = 0 \text{ and } 11x-y-23 = 0 \text{ are the two equations. }

\displaystyle \\

Question 4: Find the equations to the straight lines which pass through the point \displaystyle (h, k) and are inclined at angle \displaystyle \tan^{-1} m to the straight line \displaystyle y = mx + c .

Answer:

\displaystyle \text{Here } x_1 = h, \hspace{0.5cm} y_1 = k , \hspace{0.5cm} \alpha = \tan^{-1} m \hspace{0.5cm} m = m

Therefore the equations are:

\displaystyle y - k = \Big( \frac{ m + m }{1 - m^2 } \Big) ( x - h)

\displaystyle \Rightarrow y - k = \Big( \frac{ 2m }{1 - m^2 } \Big) ( x - h)

\displaystyle \Rightarrow (y-k)(1-m^2) = 2m ( x - h)

\displaystyle \Rightarrow (1- m^2)y - 2mx = k( 1-m^2) - 2mh … … … … … i)

\displaystyle y - k = \Big( \frac{ m - m }{1 - m^2 } \Big) ( x - h)

\displaystyle \Rightarrow y - k = 0 ( x - h)

\displaystyle \Rightarrow y = k … … … … … ii)

\displaystyle \text{Therefore } (1- m^2)y - 2nx = k( 1-m^2) - 2mh \text{ and } y = k \text{ are the two equations. }

\displaystyle \\

Question 5: Find the equations to the straight lines passing through the point \displaystyle (2, 3) and inclined at an angle of \displaystyle 45^{\circ} to the line \displaystyle 3 x + y -5 = 0 .

Answer:

Given equation:

\displaystyle 3x+y-5=0 \Rightarrow y = - 3x + 5 \therefore \text{ Slope } m = -3

\displaystyle \text{Here } x_1 = 2, \hspace{0.5cm} y_1 = 3 , \hspace{0.5cm} \alpha = 45^{\circ} \hspace{0.5cm} m = -3

Therefore the equations are:

\displaystyle y - (3) = \Big( \frac{ -3 + \tan 45^{\circ} }{1 + 3 \tan 45^{\circ}} \Big) ( x - 2)

\displaystyle \Rightarrow y -3 = \Big( \frac{ -3 + 1 }{1 + 3 } \Big) ( x - 2)

\displaystyle \Rightarrow y -3 = \frac{-1}{2} ( x- 2)

\displaystyle \Rightarrow x + 2y -8 = 0 … … … … … i)

\displaystyle y - (3) = \Big( \frac{ -3 - \tan 45^{\circ} }{1 - 3 \tan 45^{\circ}} \Big) ( x - 2)

\displaystyle \Rightarrow y -3 = \Big( \frac{ -3 - 1 }{1 3 3 } \Big) ( x - 2)

\displaystyle \Rightarrow y -3 = 2 ( x- 2)

\displaystyle \Rightarrow 2x-y-1= 0 … … … … … ii)

\displaystyle \text{Therefore } x + 2y -8 = 0 \text{ and } 2x-y-1= 0 \text{ are the two equations. }

\displaystyle \\

Question 6: Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenuse is \displaystyle 3 x + 4 y = 4 and the opposite vertex is the point \displaystyle (2, 2) .

Answer:

Given equation:

\displaystyle 3x+4y=4 \Rightarrow y = \frac{-3}{4} x + 4 \therefore \text{ Slope } m = \frac{-3}{4}  

\displaystyle \text{Here } x_1 = 2, \hspace{0.5cm} y_1 = 2 , \hspace{0.5cm} \alpha = 45^{\circ} \hspace{0.5cm} m = \frac{-3}{4}  

Therefore the equations are:

\displaystyle y - 2 = \Big( \frac{ \frac{-3}{4} + \tan 45^{\circ} }{1 - (\frac{-3}{4}) \tan 45^{\circ}} \Big) ( x - 2)

\displaystyle \Rightarrow y -2 = \Big( \frac{ \frac{-3}{4} + 1 }{1 + \frac{3}{4} } \Big) ( x - 2)

\displaystyle \Rightarrow y -2 = \frac{1}{7} ( x- 2)

\displaystyle \Rightarrow x-7y+12=0 … … … … … i)

\displaystyle y - 2 = \Big( \frac{ \frac{-3}{4} - \tan 45^{\circ} }{1 - \frac{3}{4} \tan 45^{\circ}} \Big) ( x - 2)

\displaystyle \Rightarrow y -2 = \Big( \frac{ \frac{-3}{4} - 1 }{1 - \frac{-3}{4} } \Big) ( x - 2)

\displaystyle \Rightarrow y -2 = \frac{-7}{1} ( x- 2)

\displaystyle \Rightarrow 7x+y-16=0 … … … … … ii)

\displaystyle \text{Therefore } x-7y+12=0 \text{ and } 7x+y-16=0 \text{ are the two equations. }

\displaystyle \\

Question 7: The equation of one side of an equilateral triangle is \displaystyle x-y =0 and one vertex is \displaystyle (2+\sqrt{3},5) . Prove that a second side is \displaystyle y + ( 2- \sqrt{3})x =6 and find the equation of the third side.

Answer:

Refer to the adjoining figure. Since the triangle is equilateral triangle, hence all angles are \displaystyle 60^{\circ}

Given equation:

\displaystyle x-y=0 \Rightarrow y = x \therefore \text{ Slope } m = 1

\displaystyle \text{Here } x_1 = 2+\sqrt{3} , \hspace{0.5cm} y_1 = 5 , \hspace{0.5cm} \alpha = 60^{\circ} \hspace{0.5cm} m = 1

Therefore the equations are:

\displaystyle y - 5 = \Big( \frac{ 1 + \tan 60^{\circ} }{1 - \tan 60^{\circ}} \Big) ( x - 2-\sqrt{3} )

\displaystyle \Rightarrow y -5 = \Big( \frac{ 1+\sqrt{3} }{1 - \sqrt{3} } \Big) ( x - 2 - \sqrt{3} )

\displaystyle \Rightarrow y -5 = -(2 +\sqrt{3})( x - 2 - \sqrt{3} )

\displaystyle \Rightarrow ( 2+\sqrt{3}) x + y = 5 + ( 2 + \sqrt{3})^2 … … … … … i)

\displaystyle y - 5 = \Big( \frac{ 1 - \tan 60^{\circ} }{1 + \tan 60^{\circ}} \Big) ( x - 2-\sqrt{3} )

\displaystyle \Rightarrow y -5 = \Big( \frac{ 1-\sqrt{3} }{1 + \sqrt{3} } \Big) ( x - 2 - \sqrt{3} )

\displaystyle \Rightarrow y -5 = -(2 -\sqrt{3})( x - 2 - \sqrt{3} )

\displaystyle \Rightarrow ( 2-\sqrt{3}) x + y -6=0 … … … … … ii)

\displaystyle \text{Therefore } ( 2+\sqrt{3}) x + y = 5 + ( 2 + \sqrt{3})^2 \text{ and } ( 2-\sqrt{3}) x + y -6=0 \text{ are the two equations. }

\displaystyle \\

Question 8: Find the equations of the two straight lines through \displaystyle (1,2) forming two sides of a square of which \displaystyle 4x + 7y=12 is one diagonal.

Answer:

Refer to the adjoining figure.

Given equation:

\displaystyle 4x+7y=12 \Rightarrow y = \frac{-4}{7} x + \frac{12}{7} \therefore \text{ Slope } m = \frac{-4}{7}  

\displaystyle \text{Here } x_1 = 1 , \hspace{0.5cm} y_1 = 2 , \hspace{0.5cm} \alpha = 45^{\circ} \hspace{0.5cm} m = \frac{-4}{7}  

Therefore the equations are:

\displaystyle y - 2 = \Big( \frac{ \frac{-4}{7} + \tan 45^{\circ} }{1 - ( \frac{-4}{7}) \tan 45^{\circ}} \Big) ( x - 1 )

\displaystyle \Rightarrow y -2 = \Big( \frac{ \frac{-4}{7}+1 }{1 + \frac{4}{7} } \Big) ( x - 1 )

\displaystyle \Rightarrow y -2 = \frac{3}{11} ( x - 1)

\displaystyle \Rightarrow 3x-11y+ 19 = 0 … … … … … i)

\displaystyle y - 2 = \Big( \frac{ \frac{-4}{7} - \tan 45^{\circ} }{1 + ( \frac{-4}{7}) \tan 45^{\circ}} \Big) ( x - 1 )

\displaystyle \Rightarrow y -2 = \Big( \frac{ \frac{-4}{7}+1 }{1 + \frac{4}{7} } \Big) ( x - 1 )

\displaystyle \Rightarrow y -2 = \frac{-11}{3} ( x - 1)

\displaystyle \Rightarrow 11x+3y-17 = 0 … … … … … ii)

\displaystyle \text{Therefore } 3x-11y+ 19 = 0 \text{ and } 11x+3y-17 = 0 \text{ are the two equations. }

\displaystyle \\

Question 9: Find the equation of two straight line passing through \displaystyle (1,2) and making an angle of \displaystyle 60^{\circ} . with the line \displaystyle x + y = 0 . Find also the area of the triangle formed by the three lines.

Answer:

Refer to the adjoining figure.

Given equation:

\displaystyle x+y=0 \Rightarrow y = -x \therefore \text{ Slope } m = -1

\displaystyle \text{Here } x_1 = 1 , \hspace{0.5cm} y_1 = 2 , \hspace{0.5cm} \alpha = 60^{\circ} \hspace{0.5cm} m = -1

Therefore the equations are:

\displaystyle y - 2 = \Big( \frac{ -1 + \tan 60^{\circ} }{1 + \tan 60^{\circ}} \Big) ( x - 1 )

\displaystyle \Rightarrow y -2 = \Big( \frac{ \sqrt{3}-1 }{\sqrt{3}+1 } \Big) ( x - 1 )

\displaystyle \Rightarrow y -2 = (2-\sqrt{3}) ( x - 1) … … … … … i)

\displaystyle y - 2 = \Big( \frac{ -1 - \tan 60^{\circ} }{1 - \tan 60^{\circ}} \Big) ( x - 1 )

\displaystyle \Rightarrow y -2 = \Big( \frac{ \sqrt{3}+1 }{\sqrt{3}-1 } \Big) ( x - 1 )

\displaystyle \Rightarrow y -2 = (2+\sqrt{3}) ( x - 1) … … … … … i)

\displaystyle \text{Therefore } y -2 = (2-\sqrt{3}) ( x - 1) \text{ and } y -2 = (2+\sqrt{3}) ( x - 1) \text{ are the two equations. }

\displaystyle \text{Solving } x+y=0 & \displaystyle y -2 = (2-\sqrt{3}) ( x - 1)

\displaystyle \text{We get } x = - \Big( \frac{\sqrt{3}+1}{2} \Big) , y = \Big( \frac{\sqrt{3}+1}{2} \Big)

\displaystyle \therefore B = \Big( - ( \frac{\sqrt{3}+1}{2} \Big) , \Big( \frac{\sqrt{3}+1}{2} ) \Big)

Similarly \displaystyle \text{Solving } x+y = 0 \text{ and } y -2 = (2+\sqrt{3}) ( x - 1)

\displaystyle \text{We get } x = \Big( \frac{\sqrt{3}-1}{2} \Big) , y = - \Big( \frac{\sqrt{3}-1}{2} \Big)

\displaystyle \therefore C = \Bigg( \Big( \frac{\sqrt{3}-1}{2} \Big) , -\Big( \frac{\sqrt{3}-1}{2} \Big) \Bigg)

\displaystyle AB =\sqrt{ [ 1 + ( \frac{\sqrt{3}+1}{2} )^2 ] + [ 2 - (\frac{\sqrt{3}+1}{2} )^2 ] } = \sqrt{6}

Similarly, $latex \displaystyle BC = AD = \sqrt{6} \text{ unit. }

Therefore are of \displaystyle \triangle ABC = \frac{\sqrt{3} \times ( \sqrt{6})^2}{4} = \frac{3\sqrt{3}}{2} \text{ sq. units. }

\displaystyle \\

Question 10: Two sides of an isosceles triangle are given by the equations \displaystyle 7 x-y+ 3=0 \text{ and } x +y - 3 = 0 and its third side passes through the point \displaystyle (1, - 10) . Determine the equation of the third side.

Answer:

Refer to the adjoining figure.

\displaystyle AB = BC

\displaystyle \tan B = \tan C

Therefore \displaystyle \text{Slope of } AB = 7

and \displaystyle \text{Slope of } AC = - 1

Let \displaystyle m be the \displaystyle \text{Slope of } BC

\displaystyle \therefore \Big| \frac{m-7}{1+7m} \Big | = \Big| \frac{m+1}{1-m} \Big | = \Big| \frac{m+1}{m-1} \Big |

\displaystyle \Rightarrow \frac{m-7}{1+7m} = \pm \frac{m+1}{m-1}  

Taking the \displaystyle + sign, we get

\displaystyle m^2 - 8m+7 = 7m^2 + 8m+1

\displaystyle \Rightarrow ( m+3) ( m - \frac{1}{3} ) = 0

\displaystyle \Rightarrow m = - 3, \frac{1}{3}  

Also now taking \displaystyle - ve sign,

\displaystyle ( m-7)(m-1) = - ( 7m+1)(m+1)

\displaystyle \Rightarrow m^2 - 8m + 7 = - 7m^2 - 8m - 1

\displaystyle \Rightarrow m^2 = - 1 ( not possible)

Therefore the equation of sides are

\displaystyle y + 10 = - 3 ( x-1)

\displaystyle \Rightarrow 3x + y + 7 = 0 … … … … … i)

\displaystyle y + 10 = \frac{1}{3} ( x-1)

\displaystyle \Rightarrow x - 3y - 31 = 0 … … … … … ii)

\displaystyle \\

Question 11: Show that the point \displaystyle (3, - 5) lies between the parallel lines \displaystyle 2 x+3y-7=0 \text{ and } 2x+ 3y +12=0 and find the equation of lines through \displaystyle (3,-5) cutting the above lines at an angle of \displaystyle 45^{\circ} .

Answer:

Given lines:

\displaystyle 2 x+3y-7=0 … … … … … i)

\displaystyle 2x+ 3y +12=0 … … … … … ii)

The distance between line i) and ii)

\displaystyle d = \Big| \frac{12-(-7)}{\sqrt{2^2 + 3^2}} \Big| = \frac{19}{\sqrt{13}}  

Distance for \displaystyle (3, -5) from line i)

\displaystyle d_1 = \Big| \frac{2(3)+3(-5)-7}{\sqrt{2^2 + 3^2}} \Big| = \frac{16}{\sqrt{13}}  

Distance for \displaystyle (3, -5) from line ii)

\displaystyle d_1 = \Big| \frac{2(3)+3(-5)+12}{\sqrt{2^2 + 3^2}} \Big| = \frac{3}{\sqrt{13}}  

\displaystyle \text{Now we see that }  d_1 + d_2 = \frac{19}{\sqrt{13}} = d

Therefore we can say that \displaystyle (3, -5) is between the two given lines.

Let m be the slope of the line passing through \displaystyle ( 3, -5) . This line makes \displaystyle 45^{\circ} with the lines. The slope of the given lines is \displaystyle \frac{-2}{3} . Therefore,

\displaystyle \tan 45^{\circ} = \Big| \frac{m- ( \frac{-2}{3}) }{1 + m ( \frac{-2}{3})} \Big|

\displaystyle \Rightarrow \frac{3m+2}{3-2m} = \pm 1

Two cases arise: \displaystyle \text{Case 1: } 3m + 2 = 3 - 2m \hspace{0.5cm} \Rightarrow m = \frac{1}{5}  

\displaystyle \text{Case 2: } 3m + 2 = -(3 - 2m) \hspace{0.5cm} \Rightarrow m = -5

Therefore, the required lines are

\displaystyle y - ( -5) = \frac{1}{5} (x-3) \hspace{0.5cm} \Rightarrow x - 5y - 28 = 0

and

\displaystyle y - ( -5) = -5 (x-3) \hspace{0.5cm} \Rightarrow 5x + y - 10 = 0

\displaystyle \\

Question 12: The equation of the base of an equilateral triangle is \displaystyle x + y =2 and its vertex is \displaystyle (2, - 1) . Find the length and equations of its sides.

Answer:

Since this is an equilateral triangle, hence all the three angles are \displaystyle 60^{\circ} .

The slope of the given lines is \displaystyle -1 . Therefore,

\displaystyle \tan 60^{\circ} = \Big| \frac{m- ( -1) }{1 + m ( -1)} \Big|

\displaystyle \Rightarrow \frac{m+1}{m-1} = \pm \sqrt{3}

Two cases arise: \displaystyle \text{Case 1: } m+1 = \sqrt{3} ( m-1) \hspace{0.5cm} \Rightarrow m = \frac{\sqrt{3}+1}{\sqrt{3}-1} = 2+\sqrt{3}

\displaystyle \text{Case 2: } m+1 = -\sqrt{3} (m-1) \hspace{0.5cm} \Rightarrow m = \frac{\sqrt{3}-1}{\sqrt{3}+1} = 2-\sqrt{3}

Therefore, the required lines are

\displaystyle y - ( -1) = (2+\sqrt{3}) (x-1) \hspace{0.5cm} \Rightarrow y +1 = (2+\sqrt{3}) (x-2)

and

\displaystyle y - ( -1) = (2-\sqrt{3}) (x-1) \hspace{0.5cm} \Rightarrow y + 1= (2-\sqrt{3}) (x-2)

\displaystyle \text{Solving } x + y =2 \text{ and } y +1 = (2+\sqrt{3}) (x-2) \text{ we get }

\displaystyle B = \Big( \frac{15+\sqrt{3}}{6} , \frac{-(3+\sqrt{3})}{6} \Big)

Similarly, \displaystyle \text{Solving } x + y =2 \text{ and } y + 1= (2-\sqrt{3}) (x-2) \text{ we get }

\displaystyle C = \Big( \frac{15-\sqrt{3}}{6} , \frac{-(3-\sqrt{3})}{6} \Big)

\displaystyle \text{Therefore } AB = BC = CA = \sqrt{\frac{2}{3}}  

\displaystyle \\

Question 13: If two opposite vertices of a square arc \displaystyle (1,2) \text{ and } (5, 8) , find the coordinates of its other two vertices and the equations of its sides.

Answer:

Please refer to the adjoining figure.

\displaystyle \text{Slope of } AC = \frac{8-2}{5-1} = \frac{3}{2}  

The sides \displaystyle AB \text{ and } AD passes through \displaystyle (1, 2) and makes an angle of \displaystyle 45^{\circ} with \displaystyle AC whose slope is \displaystyle \frac{3}{2}  

The equation of \displaystyle AB \text{ and } AD are given by

\displaystyle y - 2 = \frac{\frac{3}{2} \pm \tan 45^{\circ} }{1 \mp \frac{3}{2} \tan 45^{\circ}} ( x - 1)

\displaystyle \Rightarrow y - 2 = \frac{3 \pm 2}{2 \mp 3} ( x - 1)

\displaystyle \Rightarrow y - 2 = -5( x-1) \text{ and } y - 2 = \frac{1}{5} ( x-1)

\displaystyle \Rightarrow 5x + y -7 = 0 \text{ and } x - 5y + 9 = 0

Therefore the equations of \displaystyle AB \text{ and } AD \text{ are } 5x + y -7 = 0 \text{ and } x - 5y + 9 = 0 respectively.

\displaystyle \text{Since } BC is parallel to \displaystyle AD , the equation of \displaystyle BC is \displaystyle x - 5y + \lambda_1 = 0

This line passes through \displaystyle ( 5, 8) . Therefore,

\displaystyle 5 - 40 + \lambda_1 = 0 \Rightarrow \lambda_1 = 35

Therefore the equation of \displaystyle BC is \displaystyle x - 5y + 35 = 0

\displaystyle \text{Since } CD is parallel to \displaystyle AB , the equation of \displaystyle CD is \displaystyle 5x + y + \lambda_2 = 0

This line passes through \displaystyle ( 5, 8) . Therefore,

\displaystyle 25+8 + \lambda_2 = 0 \Rightarrow \lambda_2 = -33

Therefore the equation of \displaystyle CD is \displaystyle 5x + y -33 = 0

Solving equation of \displaystyle AB \text{ and } BC \displaystyle \text{We get } B ( 0,7) .

Solving equation of \displaystyle AD \text{ and } CD \displaystyle \text{We get } D ( 6, 3) .

Hence the two vertices are \displaystyle B ( 0,7) \text{ and } D ( 6, 3) .