Question 1: The equation of the directrix of a hyperbola is \displaystyle x-y + 3-0. Its focus is \displaystyle (- 1, 1) and eccentricity \displaystyle 3 . Find the equation of the hyperbola.

Answer:

Let \displaystyle S(-1, 1) be the focus and \displaystyle P(x, y) be a point on the Hyperbola.

Draw \displaystyle PM perpendicular from \displaystyle P on the directrics. Then, by definition

\displaystyle SP = e PM

\displaystyle \Rightarrow SP^2 = e^2 PM^2

\displaystyle \Rightarrow (x+1)^2 + ( y - 1)^2 = (3)^2 \Bigg[ \frac{x-y+3}{\sqrt{(1)^2+(-1)^2}}  \Bigg]^2   \hspace{2.0cm} [\because e = 3]

\displaystyle \Rightarrow x^2 + 1 + 2x + y^2 + 1 - 2y = \frac{9}{2} \Big[ x-y+3 \Big]^2

\displaystyle \Rightarrow 2[ x^2 + y^2 + 2x - 2y + 2 ] = 9 [ x-y+3]^2

\displaystyle \Rightarrow 2x^2 + 2y^2 + 4x - 4y + 4 = 9[ x^2 + y^2 + 9 -2xy-6y+6x ]

\displaystyle \Rightarrow 2x^2 + 2y^2 + 4x - 4y + 4 = 9x^2+9y^2+81-18xy-54y+54x

\displaystyle \Rightarrow 7x^2 + 7y^2-18xy+50x-50y+77=0

1

This is the required equation of the hyperbola.

\\

Question 2: Find the equation of the hyperbola whose

(i) focus is \displaystyle (0, 3), directrix is \displaystyle x + y - 1 = 0 and eccentricity \displaystyle = 2

(ii) focus is \displaystyle (1, 1), directrix is \displaystyle 3 x + 4y + 8=0 and eccentricity \displaystyle =2

(iii) focus is \displaystyle (1, 1) directrix is \displaystyle 2x+y =1 and eccentricity \displaystyle = \sqrt{3}

(iv) focus is \displaystyle (2,-1), directrix is \displaystyle 2 x + 3 y =1 and eccentricity \displaystyle =2

(v) focus is \displaystyle (a,0), directrix is \displaystyle 2 x -y + a=0 and eccentricity \displaystyle = 4/3

(vi) focus is \displaystyle (2,2), directrix is \displaystyle x + y = 9 and eccentricity \displaystyle = 2

Answer:

(i) Given focus is \displaystyle (0, 3), directrix is \displaystyle x + y - 1 = 0 and eccentricity \displaystyle = 2

Let \displaystyle S(0, 3) be the focus and \displaystyle P(x, y) be a point on the Hyperbola.

Draw \displaystyle PM perpendicular from \displaystyle P on the directrics. Then, by definition

\displaystyle SP = e PM

\displaystyle \Rightarrow SP^2 = e^2 PM^2

\displaystyle \Rightarrow (x-0)^2 + ( y - 3)^2 = (2)^2 \Bigg[ \frac{x+y-1}{\sqrt{(1)^2+(1)^2}}  \Bigg]^2   \hspace{2.0cm} [\because e = 2]

\displaystyle \Rightarrow x^2 + y^2 + 9 - 6y = \frac{4}{2} \Big[ x+y-1 \Big]^2

\displaystyle \Rightarrow  x^2 + y^2 - 6y + 9  = 2 [ x+y-1]^2

\displaystyle \Rightarrow x^2 + y^2 - 6y + 9 = 2[ x^2 + y^2 + 1 +2xy-2y-2x ]

\displaystyle \Rightarrow x^2 + y^2 - 6y + 9 = 2x^2 + 2y^2 + 2 +4xy-4y-4x

\displaystyle \Rightarrow x^2 + y^2+4xy-4x+2y-7=0

21

This is the required equation of the hyperbola.

\\

(ii) Given focus is \displaystyle (1, 1), directrix is \displaystyle 3 x + 4y + 8=0 and eccentricity \displaystyle =2

Let \displaystyle S(1, 1) be the focus and \displaystyle P(x, y) be a point on the Hyperbola.

Draw \displaystyle PM perpendicular from \displaystyle P on the directrics. Then, by definition

\displaystyle SP = e PM

\displaystyle \Rightarrow SP^2 = e^2 PM^2

\displaystyle \Rightarrow (x-1)^2 + ( y - 1)^2 = (2)^2 \Bigg[ \frac{3x+4y+8}{\sqrt{(3)^2+(4)^2}}  \Bigg]^2   \hspace{2.0cm} [\because e = 2]

\displaystyle \Rightarrow x^2 + 1 - 2x + y^2 + 1 - 2y = \frac{4}{25} \Big[3x+4y+8 \Big]^2

\displaystyle \Rightarrow 25[ x^2 + y^2 - 2x - 2y + 2 ] = 4 [ 3x+4y+8]^2

\displaystyle \Rightarrow 25x^2 + 25y^2 -50x - 50y + 50 = 4[ 9x^2 + 16y^2 + 64 +24xy+64y+48x ]

\displaystyle \Rightarrow 25x^2 + 25y^2 -50x - 50y + 50 = 36x^2 + 64y^2 + 256 +96xy+256y+192x

\displaystyle \Rightarrow 11x^2 + 39y^2+96xy+242x+306y+206=0

22

This is the required equation of the hyperbola.

\\

(iii) Given focus is \displaystyle (1, 1) directrix is \displaystyle 2x+y =1 and eccentricity \displaystyle = \sqrt{3}

Let \displaystyle S(1, 1) be the focus and \displaystyle P(x, y) be a point on the Hyperbola.

Draw \displaystyle PM perpendicular from \displaystyle P on the directrics. Then, by definition

\displaystyle SP = e PM

\displaystyle \Rightarrow SP^2 = e^2 PM^2

\displaystyle \Rightarrow (x-1)^2 + ( y - 1)^2 = (\sqrt{3})^2 \Bigg[ \frac{2x+y-1}{\sqrt{(2)^2+(1)^2}}  \Bigg]^2   \hspace{2.0cm} [\because e = 2]

\displaystyle \Rightarrow x^2 + 1 - 2x + y^2 + 1 - 2y = \frac{3}{5} \Big[2x+y-1 \Big]^2

\displaystyle \Rightarrow 5[ x^2 + y^2 - 2x - 2y + 2 ] = 3 [ 2x+y-1]^2

\displaystyle \Rightarrow 5x^2 + 5y^2 -10x - 10y + 10 = 3[ 4x^2 + y^2 + 1 +4xy-2y-4x ]

\displaystyle \Rightarrow 5x^2 + 5y^2 -10x - 10y + 10 = 12x^2 + 3y^2 + 3 +12xy-6y-12x

\displaystyle \Rightarrow 7x^2 -2y^2+12xy-2x+4y-7=0

23

This is the required equation of the hyperbola.

\\

(iv) Given focus is \displaystyle (2,-1), directrix is \displaystyle 2 x + 3 y =1 and eccentricity \displaystyle =2

Let \displaystyle S(2, -1) be the focus and \displaystyle P(x, y) be a point on the Hyperbola.

Draw \displaystyle PM perpendicular from \displaystyle P on the directrics. Then, by definition

\displaystyle SP = e PM

\displaystyle \Rightarrow SP^2 = e^2 PM^2

\displaystyle \Rightarrow (x-2)^2 + ( y +1)^2 = (2)^2 \Bigg[ \frac{2 x + 3 y - 1}{\sqrt{(2)^2+(3)^2}}  \Bigg]^2   \hspace{2.0cm} [\because e = 2]

\displaystyle \Rightarrow x^2 + 4 -4x + y^2 + 1 + 2y = \frac{4}{13} \Big[ 2 x + 3 y - 1 \Big]^2

\displaystyle \Rightarrow 13[ x^2 + y^2 -4x + 2y + 5 ] = 4 [2 x + 3 y - 1]^2

\displaystyle \Rightarrow 13x^2 + 13y^2 -52x + 26y + 65 = 4[ 4x^2 + 9y^2 + 1 +12xy-6y-4x ]

\displaystyle \Rightarrow 13x^2 + 13y^2 -52x + 26y + 65 = 16x^2+36y^2+4+48xy-24y-16x

\displaystyle \Rightarrow 3x^2 + 23y^2+48xy+36x-50y-61=0

24

This is the required equation of the hyperbola.

\\

(v) Given focus is \displaystyle (a,0), directrix is \displaystyle 2 x -y + a=0 and eccentricity \displaystyle = 4/3

Let \displaystyle S(a, 0) be the focus and \displaystyle P(x, y) be a point on the Hyperbola.

Draw \displaystyle PM perpendicular from \displaystyle P on the directrics. Then, by definition

\displaystyle SP = e PM

\displaystyle \Rightarrow SP^2 = e^2 PM^2

\displaystyle \Rightarrow (x-a)^2 + ( y - 0)^2 = (\frac{4}{3})^2 \Bigg[ \frac{2 x -y + a}{\sqrt{(2)^2+(-1)^2}}  \Bigg]^2   \hspace{2.0cm} \Big[ \because e = \frac{4}{3} \Big]

\displaystyle \Rightarrow x^2 + a^2 -2ax + y^2 = \frac{16}{45} \Big[2 x -y + a \Big]^2

\displaystyle \Rightarrow 45[ x^2 + y^2 - 2ax +a^2 ] = 16 [ 2 x -y + a ]^2

\displaystyle \Rightarrow 45x^2 + 45y^2 - 90ax +45a^2 = 16[ 4x^2 + y^2 + a^2 -4xy-2ay+4ax ]

\displaystyle \Rightarrow 45x^2 + 45y^2 - 90ax +45a^2 = 64x^2 + 16y^2 + 16a^2 -64xy-32ay+64ax

\displaystyle \Rightarrow 19x^2 -29y^2-64xy+154ax-32ay-29a^2=0

This is the required equation of the hyperbola.

\\

(vi) Given focus is \displaystyle (2,2), directrix is \displaystyle x + y = 9 and eccentricity \displaystyle = 2

Let \displaystyle S(2, 2) be the focus and \displaystyle P(x, y) be a point on the Hyperbola.

Draw \displaystyle PM perpendicular from \displaystyle P on the directrics. Then, by definition

\displaystyle SP = e PM

\displaystyle \Rightarrow SP^2 = e^2 PM^2

\displaystyle \Rightarrow (x-2)^2 + ( y - 2)^2 = (2)^2 \Bigg[ \frac{x+y-9}{\sqrt{(1)^2+(1)^2}}  \Bigg]^2   \hspace{2.0cm} [\because e = 2]

\displaystyle \Rightarrow x^2 + 4 -4x + y^2 + 4 -4y = \frac{4}{2} \Big[ x+y-9 \Big]^2

\displaystyle \Rightarrow  x^2 + y^2 -4x - 4y + 8  = 2 [ x+y-9 ]^2

\displaystyle \Rightarrow x^2 + y^2 -4x - 4y + 8 = 2[ x^2 + y^2 + 81 +2xy-18y-18x ]

\displaystyle \Rightarrow x^2 + y^2 -4x - 4y + 8 = 2x^2+2y^2+162+4xy-36y-36x

\displaystyle \Rightarrow x^2 + y^2+4xy-32x-32y+154=0

26

This is the required equation of the hyperbola.

\\

Question 3: Find the eccentricity, coordinates of the foci, equations of directrices and length of the latus-rectum of the hyperbola

(i) \displaystyle 9x^2 - 16y^2 = 144

(ii) \displaystyle 16x^2 - 9y^2 = -144

(iii) \displaystyle 4x^2 - 3y^2 = 36

(iv) \displaystyle 3x^2 - y^2 = 4

(v) \displaystyle 2x^2 - 3y^2 = 5

Answer:

(i) Given \displaystyle 9x^2 - 16y^2 = 144

\displaystyle \Rightarrow \frac{9x^2}{144} - \frac{16y^2}{144} = 1

\displaystyle \Rightarrow \frac{x^2}{16} - \frac{y^2}{9} = 1

\displaystyle \text{This is of the form } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \text{ where }  a^2 = 16 \text{ and } b^2 = 9

\displaystyle \text{Eccentricity: }  e = \sqrt{1 + \frac{b^2}{a^2} } = \sqrt{ 1+ \frac{9}{16} } = \sqrt{ \frac{25}{16} } = \frac{5}{4}

\displaystyle \text{Foci: The coordinates of the foci are } ( \pm ae, 0) \text{ i.e. } (\pm 5, 0)

\displaystyle \text{Equation of directrices: } x = \pm \frac{a}{e} \text{ i.e. } x = \pm \frac{16}{5} \hspace{0.2cm} \Rightarrow 5x = \pm 16 \hspace{0.2cm} \Rightarrow 5x \mp 16 = 0

\displaystyle \text{Length of latus-rectum } = \frac{2b^2}{a} = \frac{2 \times 9}{4} = \frac{9}{2}

\\

(ii) Given \displaystyle 16x^2 - 9y^2 = -144

\displaystyle \Rightarrow \frac{16x^2}{144} - \frac{9y^2}{144} = -1

\displaystyle \Rightarrow \frac{x^2}{9} - \frac{y^2}{16} = -1

\displaystyle \text{This is of the form } \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1, \text{ where }  a^2 = 9 \text{ and } b^2 = 16

\displaystyle \text{Eccentricity: }  e = \sqrt{1 + \frac{a^2}{b^2} } = \sqrt{ 1+ \frac{9}{16} } = \sqrt{ \frac{25}{16} } = \frac{5}{4}

\displaystyle \text{Foci: The coordinates of the foci are } ( 0, \pm be) \text{ i.e. } (0, \pm 5)

\displaystyle \text{Equation of directrices: } y = \pm \frac{b}{e} \text{ i.e. } y = \pm \frac{4}{\frac{5}{4}} \hspace{0.2cm} \Rightarrow 5y = \pm 16 \hspace{0.2cm} \Rightarrow 5y \mp 16 = 0

\displaystyle \text{Length of latus-rectum } = \frac{2a^2}{b} = \frac{2 \times 9}{4} = \frac{9}{2}

\\

(iii) Given \displaystyle 4x^2 - 3y^2 = 36

\displaystyle \Rightarrow \frac{4x^2}{36} - \frac{3y^2}{36} = 1

\displaystyle \Rightarrow \frac{x^2}{9} - \frac{y^2}{12} = 1

\displaystyle \text{This is of the form } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \text{ where }  a^2 = 9 \text{ and } b^2 = 12

\displaystyle \text{Eccentricity: }  e = \sqrt{1 + \frac{b^2}{a^2} } = \sqrt{ 1+ \frac{12}{9} } = \sqrt{ \frac{21}{9} } = \sqrt{ \frac{7}{3} }

\displaystyle \text{Foci: The coordinates of the foci are } ( \pm ae, 0) \text{ i.e. } (\pm \sqrt{21} , 0)

\displaystyle \text{Equation of directrices: } x = \pm \frac{a}{e} \text{ i.e. } x = \pm 3 \times \frac{\sqrt{3}}{\sqrt{7}}  \hspace{0.2cm} \Rightarrow \sqrt{7} x = \pm 3\sqrt{3} \hspace{0.2cm} \Rightarrow \sqrt{7} x \mp 3\sqrt{3} = 0

\displaystyle \text{Length of latus-rectum } = \frac{2b^2}{a} = \frac{2 \times 12}{3} = 8

\\

(iv) Given \displaystyle 3x^2 - y^2 = 4

\displaystyle \Rightarrow \frac{3x^2}{4} - \frac{y^2}{4} = 1

\displaystyle \Rightarrow \frac{x^2}{\frac{4}{3}} - \frac{y^2}{4} = 1

\displaystyle \text{This is of the form } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \text{ where }  a^2 = \frac{4}{3} \text{ and } b^2 = 4

\displaystyle \text{Eccentricity: }  e = \sqrt{1 + \frac{b^2}{a^2} } = \sqrt{ 1+ \frac{4}{\frac{4}{3}} } = \sqrt{ 1+3 } = 2

\displaystyle \text{Foci: The coordinates of the foci are } ( \pm ae, 0) \text{ i.e. } (\pm \frac{4}{\sqrt{3}}, 0)

\displaystyle \text{Equation of directrices: } x = \pm \frac{a}{e} \text{ i.e. } x = \pm \frac{\frac{2}{\sqrt{3}}}{2} \hspace{0.2cm} \Rightarrow \sqrt{3}x = \pm 1 \hspace{0.2cm} \\ \\ \Rightarrow \sqrt{3}x \mp 1 = 0

\displaystyle \text{Length of latus-rectum } = \frac{2b^2}{a} = \frac{2 \times 4}{\frac{2}{\sqrt{3}}} = 4\sqrt{3}

\\

(v) Given \displaystyle 2x^2 - 3y^2 = 5

\displaystyle \Rightarrow \frac{2x^2}{5} - \frac{3y^2}{5} = 1

\displaystyle \Rightarrow \frac{x^2}{\frac{5}{2}} - \frac{y^2}{\frac{5}{3}} = 1

\displaystyle \text{This is of the form } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \text{ where }  a^2 = \frac{5}{2} \text{ and } b^2 = \frac{5}{3}

\displaystyle \text{Eccentricity: }  e = \sqrt{1 + \frac{b^2}{a^2} } = \sqrt{ 1+ \frac{\frac{5}{3}}{\frac{5}{2}} } = \sqrt{ \frac{5}{3} }

\displaystyle \text{Foci: The coordinates of the foci are } ( \pm ae, 0) \text{ i.e. } (\pm \frac{5}{\sqrt{6}}, 0)

\displaystyle \text{Equation of directrices: } x = \pm \frac{a}{e} \text{ i.e. } x = \pm \frac{\sqrt{\frac{5}{2}}}{\sqrt{\frac{5}{3}}} \hspace{0.2cm} \Rightarrow \sqrt{2}x = \pm \sqrt{3} \hspace{0.2cm} \\ \\ \Rightarrow \sqrt{2}x \mp \sqrt{3} = 0

\displaystyle \text{Length of latus-rectum } = \frac{2b^2}{a} = \frac{2 \times \frac{5}{3}}{\sqrt{\frac{5}{2}}} = \frac{10}{3} \sqrt{\frac{2}{5}}

\\

Question 4: Find the axes, eccentricity, latus-rectum and the coordinates of the foci of the hyperbola \displaystyle 25x^2- 36y^2= 225

Answer:

Given \displaystyle 25x^2- 36y^2= 225

\displaystyle \Rightarrow \frac{25x^2}{225} - \frac{36y^2}{225} = 1

\displaystyle \Rightarrow \frac{x^2}{9} - \frac{4y^2}{25} = 1

\displaystyle \Rightarrow \frac{x^2}{9} - \frac{y^2}{\frac{25}{4}} = 1

\displaystyle \text{This is of the form } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \text{ where }  a^2 = 9 \text{ and } b^2 = \frac{25}{4}

\displaystyle \text{Length of the transverse axis } = 2a = 2 \times 3 = 6

\displaystyle \text{Length of conjugate axis } = 2b = 2 \times \frac{5}{2} = 5

\displaystyle \text{Eccentricity: }  e = \sqrt{1 + \frac{b^2}{a^2} } = \sqrt{ 1+ \frac{ \frac{25}{4} } {9} } = \sqrt{ \frac{61}{36} }  = \frac{\sqrt{61}}{6}

\displaystyle \text{Length of latus-rectum } = \frac{2b^2}{a} = \frac{2\times \frac{25}{4} }{3} = \frac{25}{6}

\displaystyle \text{Foci: The coordinates of the foci are } ( \pm ae, 0) \text{ i.e. } (\pm \frac{\sqrt{61}}{2}, 0)

\\

Question 5: Find the center, eccentricity, foci and directrices of the hyperbola

(i) \displaystyle 16x^2 - 9y^2 +32x+36y - 164 = 0

(ii) \displaystyle x^2 - y^2 + 4x = 0

(iii) \displaystyle x^2 - 3y^2 - 2x = 8

Answer:

(i) Given \displaystyle 16x^2 - 9y^2 +32x+36y - 164 = 0 can be simplified in the following way:

\displaystyle \Rightarrow 16(x^2+2x) - 9(y^2-4y) = 164

\displaystyle \Rightarrow 16(x^2+2x+ 1) - 9(y^2-4y+4) = 164+16-36

\displaystyle \Rightarrow (x+1)^2 - 9(y-2)^2 = 144

\displaystyle \Rightarrow \frac{(x+1)^2}{9} - \frac{(y-2)^2}{16} = 1 \text{     ... ... ... ... ... i)}

Shifting the origin at \displaystyle ( -1, 2) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes \displaystyle X and \displaystyle Y, 

\displaystyle \text{We have } X = x+1 \text{ and } Y = y-2 \text{     ... ... ... ... ... ii)}

\displaystyle \text{This is of the form } \frac{(X)^2}{a^2} - \frac{(Y)^2}{b^2} = 1 \text{ where } a^2 = 9 \text{ and } b^2 = 16

Center: w.r.t the new axes \displaystyle (X=0, Y=0)

\displaystyle \therefore x = -1 \text{ and } y = 2

Therefore the coordinates of the center with respect to old axes are \displaystyle (-1, 2)

\displaystyle \text{Eccentricity: }  e = \sqrt{1 + \frac{b^2}{a^2} } = \sqrt{ 1+ \frac{ 16 }{9} } = \sqrt{ \frac{25}{9} }  = \frac{5}{3}

\displaystyle \text{Foci: The coordinates of the foci are with respect to the new axes is given by } \\ \\ ( X=\pm ae, Y=0) \text{ i.e. } (X=\pm 5, Y=0)

\displaystyle \text{Putting } X = \pm 5 \text{ and } Y = 0 \text{in equation ii) we get }

\displaystyle x = \pm 5 - 1 \text{ and } y = 0 +2

\displaystyle \Rightarrow x = 4, -6 \text{ and } y = 2

\displaystyle \text{Therefore the foci are } (4, 2) \text{ and } ( -6, 2)

Equation of directrix :

\displaystyle X = \pm \frac{a}{e} = \pm \frac{3}{\frac{5}{3}} = \pm \frac{9}{5}

\displaystyle \text{Putting } X = \pm \frac{9}{5} \text{ in equation ii) we get } 

\displaystyle \Rightarrow x = \pm \frac{9}{5} - 1

\displaystyle \Rightarrow x = \frac{4}{5} \text{ and } x = \frac{-14}{5}

\displaystyle \Rightarrow 5x - 4 = 0 \text{ and } 5x + 14 = 0

Hence the equations of the directrices w.r.t the old axes are \displaystyle 5x - 4 = 0 and \displaystyle 5x + 14 = 0

\\

(ii) Given \displaystyle x^2 - y^2 + 4x = 0 can be simplified in the following way:

\displaystyle \Rightarrow x^2+4x-y^2=0

\displaystyle \Rightarrow x^2+4x+4-y^2=4

\displaystyle \Rightarrow (x+2)^2-y^2=4

\displaystyle \Rightarrow \frac{(x+2)^2}{4} - \frac{(y)^2}{4} = 1 \text{     ... ... ... ... ... i)}

Shifting the origin at \displaystyle ( -2, 0) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes \displaystyle X and \displaystyle Y, 

\displaystyle \text{We have } X = x+2 \text{ and } Y = y \text{     ... ... ... ... ... ii)}

\displaystyle \text{This is of the form } \frac{(X)^2}{a^2} - \frac{(Y)^2}{b^2} = 1 \text{ where } a^2 =4 \text{ and } b^2 = 4

Center: w.r.t the new axes \displaystyle (X=0, Y=0)

\displaystyle \therefore x = -2 \text{ and } y = 0

Therefore the coordinates of the center with respect to old axes are \displaystyle (-2, 0)

\displaystyle \text{Eccentricity: }  e = \sqrt{1 + \frac{b^2}{a^2} } = \sqrt{ 1+ \frac{ 4 }{4} } = \sqrt{ 2 } 

\displaystyle \text{Foci: The coordinates of the foci are with respect to the new axes is given by } \\ \\ ( X=\pm ae, Y=0) \text{ i.e. } (X=\pm 2\sqrt{2}, Y=0)

\displaystyle \text{Putting } X = \pm 2\sqrt{2}  \text{ and } Y = 0 \text{in equation ii) we get }

\displaystyle x = \pm 2\sqrt{2} - 2 \text{ and } y = 0 

\displaystyle \text{Therefore the foci are } (-2\pm 2\sqrt{2}, 0)

Equation of directrix :

\displaystyle X = \pm \frac{a}{e} = \pm \frac{2}{\sqrt{2}} 

\displaystyle \text{Putting } X = \pm \frac{2}{\sqrt{2}} \text{ in equation ii) we get } 

\displaystyle \Rightarrow X = \pm \frac{2}{\sqrt{2}} - 2

\displaystyle \Rightarrow x +2= \pm \sqrt{2} 

Hence the equations of the directrices w.r.t the old axes are \displaystyle x +2= \pm \sqrt{2}  

\\

(iii) Given \displaystyle x^2 - 3y^2 - 2x = 8 can be simplified in the following way:

\displaystyle \Rightarrow x^2-2x-3y=8

\displaystyle \Rightarrow x^2-2x+1-1-3y^2=8

\displaystyle \Rightarrow (x-1)^2-3y^2=9

\displaystyle \Rightarrow \frac{(x-1)^2}{9} - \frac{(y)^2}{3} = 1 \text{     ... ... ... ... ... i)}

Shifting the origin at \displaystyle ( 1, 0) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes \displaystyle X and \displaystyle Y, 

\displaystyle \text{We have } X = x-1 \text{ and } Y = y \text{     ... ... ... ... ... ii)}

\displaystyle \text{This is of the form } \frac{(X)^2}{a^2} - \frac{(Y)^2}{b^2} = 1 \text{ where } a^2 =9 \text{ and } b^2 = 3

Center: w.r.t the new axes \displaystyle (X=0, Y=0)

\displaystyle \therefore x = 1 \text{ and } y = 0

Therefore the coordinates of the center with respect to old axes are \displaystyle (1, 0)

\displaystyle \text{Eccentricity: }  e = \sqrt{1 + \frac{b^2}{a^2} } = \sqrt{ 1+ \frac{ 3 }{9} } = \sqrt{ \frac{4}{3} } = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} 

\displaystyle \text{Foci: The coordinates of the foci are with respect to the new axes is given by } \\ \\ ( X=\pm ae, Y=0) \text{ i.e. } (X=\pm 2\sqrt{3}, Y=0)

\displaystyle \text{Putting } X = \pm 2\sqrt{3}  \text{ and } Y = 0 \text{in equation ii) we get }

\displaystyle x = \pm 2\sqrt{3} +1 \text{ and } y = 0 

\displaystyle \text{Therefore the foci are } (1\pm 2\sqrt{3}, 0)

Equation of directrix :

\displaystyle X = \pm \frac{a}{e} = \pm \frac{3}{\frac{2\sqrt{3}}{3}} = \pm \frac{9}{2\sqrt{3}} 

\displaystyle \text{Putting } X = \pm \frac{9}{2\sqrt{3}} \text{ in equation ii) we get } 

\displaystyle \Rightarrow x = 1 \pm \frac{9}{2\sqrt{3}}

Hence the equations of the directrices w.r.t the old axes are \displaystyle x = 1 \pm \frac{9}{2\sqrt{3}}  

\\

Question 6: Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in

the following cases:

(i) the distance between the foci \displaystyle = 16 and eccentricity \displaystyle = \sqrt{2}

(ii) conjugate axis is \displaystyle 5 and the distance between foci \displaystyle = 13

(iii) conjugate axis is \displaystyle 7 and passes through the point \displaystyle (3, - 2).

Answer:

(i) Given the distance between the foci \displaystyle = 16 and eccentricity \displaystyle = \sqrt{2}

The distance between the foci is \displaystyle 2ae

\displaystyle \text{Given } 2ae = 16 \Rightarrow ae = 8

\displaystyle \text{Given } e = \sqrt{2}

\displaystyle \therefore a(\sqrt{2}) = 8 \Rightarrow a = 4 \sqrt{2}

\displaystyle \therefore a^2 = 32

\displaystyle \text{We know, } b^2 = a^2(e^2-1) = 32(2-1) = 32

Therefore the equation of the hyperbola is given as

\displaystyle \frac{x^2}{32} - \frac{y^2}{32} = 1

\displaystyle \Rightarrow x^2 - y^2 = 31

\\

(ii) Given conjugate axis is \displaystyle 5 and the distance between foci \displaystyle = 13

The distance between the foci is \displaystyle 2ae

\displaystyle \text{Given } 2ae = 13 \Rightarrow ae = \frac{13}{2}

Length of conjugate axis,

\displaystyle 2b = 5 \Rightarrow b = \frac{5}{2} 

\displaystyle \text{We know, } b^2 = a^2(e^2-1) 

\displaystyle \Rightarrow \Big(\frac{5}{2} \Big)^2 = \Big(\frac{13}{2} \Big)^2 - a^2 

\displaystyle \Rightarrow a^2 = \frac{169-25}{4} = \frac{144}{4} = 36 

\displaystyle \Rightarrow a = 6 

Therefore the equation of the hyperbola is given as

\displaystyle \frac{x^2}{36} - \frac{4y^2}{25} = 1

\displaystyle \Rightarrow 25x^2 -144 y^2 = 900

\\

(iii) Given conjugate axis is \displaystyle 7 and passes through the point \displaystyle (3, - 2).

Length of the conjugate axis

\displaystyle 2b = 7 \Rightarrow b = \frac{7}{2}

\displaystyle \text{Let the equation of the hyperbola be } \frac{x^2}{a^2} - \frac{4y^2}{b^2} = 1

It passes through \displaystyle ( 3, -2)

\displaystyle \therefore \frac{3^2}{a^2} - \frac{(-2)^2}{(\frac{7}{2})^2} = 1

\displaystyle \Rightarrow \frac{3^2}{a^2} - \frac{16}{49} = 1

\displaystyle \Rightarrow \frac{9}{a^2} = \frac{16}{49} + 1

\displaystyle \Rightarrow \frac{9}{a^2} = \frac{65}{49}

\displaystyle \Rightarrow a^2 = \frac{441}{65}

Therefore the equation of the hyperbola is given as

\displaystyle \frac{65x^2}{441} - \frac{4y^2}{49} = 1

\displaystyle \Rightarrow 65x^2 -36 y^2 = 441

\\

Question 7: Find the equation of the hyperbola whose

(i) foci are \displaystyle (6,4) and \displaystyle (- 4,4) and eccentricity is \displaystyle 2.

(ii) vertices are \displaystyle (- 8, - 1) and \displaystyle (16,- 1) and focus is \displaystyle (17,- 1)

(iii) foci are \displaystyle (4,2) and \displaystyle (8,2) and eccentricity is \displaystyle 2.

(iv) vertices are at \displaystyle (0 , \pm 7) and foci are \displaystyle ( 0, \pm \frac{28}{3} )

(v) vertices are at \displaystyle (\pm 6,0) and one of the directrices is \displaystyle x = 4

(vi) foci at \displaystyle (\pm 2,0 ) and eccentricity is \displaystyle 3/2

Answer:

(i) Given foci are \displaystyle (6,4) and \displaystyle (- 4,4) and eccentricity is \displaystyle 2.

The center of the hyperbola is the mid point of the line joining the two foci.

\displaystyle \text{Therefore the coordinates of the center are } (\frac{6-4}{2}, \frac{4+4}{2}) \text{ i.e. } (1, 4)

Let \displaystyle 2a and \displaystyle 2b be the length of transverse and conjugate axes and let \displaystyle e   be the eccentricity

Then, the equation of the hyperbola is

\displaystyle \frac{(x-1)^2}{a^2} - \frac{(y-4)^2}{b^2} = 1 \ \ \ \text{     ... ... ... ... ... i)}

Now, the distance between the two foci \displaystyle = 2ae

\displaystyle \Rightarrow \sqrt{(6+4)^2+(4-4)^2} = 2ae

\displaystyle \Rightarrow 10 = 2ae

\displaystyle \Rightarrow 2 \times a \times 2 = 10 \hspace{2.0cm} [ \because e = 2]

\displaystyle \Rightarrow a = \frac{5}{2}

\displaystyle \Rightarrow a^2 = \frac{25}{4}

\displaystyle \text{Now, } b^2 = a^2 ( e^2 -1)

\displaystyle \Rightarrow b^2 = \frac{25}{4} ( 4 - 1 )

\displaystyle \Rightarrow b^2 = \frac{75}{4}

\displaystyle \text{Substituting } a^2 = \frac{25}{4} \text{ and } b^2 = \frac{75}{4} \text{in equation i) we get }

\displaystyle \frac{(x-1)^2}{\frac{25}{4}} - \frac{(y-4)^2}{\frac{75}{4}} = 1

\displaystyle \Rightarrow \frac{4(x-1)^2}{25} - \frac{4(y-4)^2}{75} = 1

\displaystyle \Rightarrow \frac{12(x-1)^2-4(y-4)^2}{75} = 1

\displaystyle \Rightarrow 12(x-1)^2 - 4 ( y-4)^2 = 75

\displaystyle \Rightarrow 12 ( x^2 + 1 - 2x) - 4 ( y^2 + 16 - 8 x) = 75

\displaystyle \Rightarrow 12x^2 + 12 - 24 x - 4y^2 - 64 +32y = 75

\displaystyle \Rightarrow 12x^2 - 4y^2 - 24x + 32 y - 127 = 0

71x

This is the equation of the required hyperbola.

\\

(ii) Given vertices are \displaystyle (- 8, - 1) and \displaystyle (16,- 1) and focus is \displaystyle (17,- 1)

The center of the hyperbola is the mid point of the line joining the two foci.

\displaystyle \text{Therefore the coordinates of the center are } (\frac{16-8}{2}, \frac{-1-1}{2}) \text{ i.e. } (4, -1)  

Let \displaystyle 2a and \displaystyle 2b be the length of transverse and conjugate axes and let \displaystyle e   be the eccentricity

Then, the equation of the hyperbola is

\displaystyle \frac{(x-1)^2}{a^2} - \frac{(y-4)^2}{b^2} = 1 \ \ \ \text{     ... ... ... ... ... i)}  

Now, the distance between the two vertices \displaystyle = 2a  

\displaystyle \Rightarrow \sqrt{(16+8)^2+(-1+1)^2} = 2a  

\displaystyle \Rightarrow 24 = 2a  

\displaystyle \Rightarrow a =12  

\displaystyle \Rightarrow a^2 = 144  

The distance between the focus and vertex \displaystyle = ae-a

\displaystyle \therefore \sqrt{(17-16)^2+(-1+1)^2} = ae-a

\displaystyle \Rightarrow \sqrt{1^1} = ae-a

\displaystyle \Rightarrow ae-a = 1

\displaystyle \Rightarrow 12 e = 1 + 12 \hspace{2.0cm} [ \because a = 12]

\displaystyle \Rightarrow e = \frac{13}{12}

\displaystyle \Rightarrow e^2 = \frac{169}{144}

\displaystyle \text{Now, } b^2 = a^2 ( e^2 -1)  

\displaystyle \Rightarrow b^2 = 144 (\frac{169}{144}  - 1 )  

\displaystyle \Rightarrow b^2 = 25  

\displaystyle \text{Substituting } a^2 = 144\text{ and } b^2 = 25 \text{in equation i) we get }  

\displaystyle \frac{(x-4)^2}{144} - \frac{(y=1)^2}{25} = 1  

\displaystyle \Rightarrow \frac{25(x-4)^2-144(y+1)^2}{3600} = 1  

\displaystyle \Rightarrow 25(x-4)^2 - 144 ( y+1)^2 = 3600  

\displaystyle \Rightarrow 25 ( x^2 + 16 - 8x) - 144 ( y^2 + 1 +2 x) = 3600  

\displaystyle \Rightarrow 25x^2 + 400 - 200 x - 144y^2 - 144 -288y = 3600  

\displaystyle \Rightarrow 25x^2 - 144y^2 - 200x -288 y - 3344 = 0  

72x

This is the equation of the required hyperbola.

\\

(iii) Given foci are \displaystyle (4,2) and \displaystyle (8,2) and eccentricity is \displaystyle 2.

The center of the hyperbola is the mid point of the line joining the two foci.

\displaystyle \text{Therefore the coordinates of the center are } (\frac{4+8}{2}, \frac{2+2}{2}) \text{ i.e. } (6, 2)

Let \displaystyle 2a and \displaystyle 2b be the length of transverse and conjugate axes and let \displaystyle e   be the eccentricity

Then, the equation of the hyperbola is

\displaystyle \frac{(x-1)^2}{a^2} - \frac{(y-4)^2}{b^2} = 1 \ \ \ \text{     ... ... ... ... ... i)}

Now, the distance between the two foci \displaystyle = 2ae

\displaystyle \Rightarrow \sqrt{(8-4)^2+(2-2)^2} = 2ae

\displaystyle \Rightarrow 4 = 2ae

\displaystyle \Rightarrow 2 \times a \times 2 = 4  \hspace{2.0cm} [ \because e = 2]

\displaystyle \Rightarrow a = 1

\displaystyle \Rightarrow a^2 = 1

\displaystyle \text{Now, } b^2 = a^2 ( e^2 -1)

\displaystyle \Rightarrow b^2 = 1 ( 2^2 - 1 ) \hspace{2.0cm} [ \because e = 2]

\displaystyle \Rightarrow b^2 = 3

\displaystyle \text{Substituting } a^2 = 1 \text{ and } b^2 = 3 \text{in equation i) we get }

\displaystyle \frac{(x-6)^2}{1} - \frac{(y-2)^2}{3} = 1

\displaystyle \Rightarrow \frac{3(x-6)^2-(y-2)^2}{3} = 1

\displaystyle \Rightarrow 3(x-6)^2-(y-2)^2 = 3

\displaystyle \Rightarrow 3 ( x^2 +36 - 12x) -  ( y^2 + 4 - 4 x) = 3

\displaystyle \Rightarrow 3x^2 + 108 - 36 x - y^2 -4 +4y = 3

\displaystyle \Rightarrow 3x^2 - y^2 - 36x + 4 y +101 = 0

73x

This is the equation of the required hyperbola.

\\

(iv) Given vertices are at \displaystyle (0 , \pm 7) and foci are \displaystyle ( 0, \pm \frac{28}{3} )

Since the vertices are on y-axis, the equation of the required hyperbola is 

\displaystyle \frac{(x-1)^2}{a^2} - \frac{(y-4)^2}{b^2} = -1 \ \ \ \text{     ... ... ... ... ... i)}

The coordinates of its vertices and foci are \displaystyle (0, \pm b) and \displaystyle (0, \pm be) respectively.

Therefore \displaystyle b = 7 and \displaystyle b^2 = 49

Now, \displaystyle be = \frac{28}{3}

\displaystyle \Rightarrow 7 \times e = \frac{28}{3}

\displaystyle \Rightarrow e = \frac{4}{3}

\displaystyle \Rightarrow e^2 = \frac{16}{9}

We know, \displaystyle a^2 = b^2 ( e^2 - 1)

\displaystyle \Rightarrow a^2 = 49 9 \frac{16}{9} - 1)

\displaystyle \Rightarrow a^2 = 49 \times \frac{7}{9}

\displaystyle \Rightarrow a^2 = \frac{343}{9}

\displaystyle \text{Substituting } a^2 = \frac{343}{9} \text{ and } b^2 = 49 \text{in equation i) we get }

\displaystyle \frac{x^2}{\frac{343}{9}} - \frac{y^2}{49} = -1

\displaystyle \Rightarrow \frac{9x^2}{343} - \frac{y^2}{49} = -1

74x

This is the equation of the required hyperbola.

\\

(v) Given vertices are at \displaystyle (\pm 6,0) and one of the directrices is \displaystyle x = 4

The vertices of the hyperbola is \displaystyle (\pm a, 0).

Therefore \displaystyle a = 6 and \displaystyle a^2 = 36

Given \displaystyle x = 4

\displaystyle \Rightarrow \frac{a}{e} = 4

\displaystyle \Rightarrow e = \frac{6}{4} = \frac{3}{2}

We know \displaystyle b^2 = a^2 ( e^2 -1)

\displaystyle \Rightarrow b^2 = 36( \frac{9}{4} - 1) = 45

\displaystyle \text{Substituting } a^2 = \frac{343}{9} \text{ and } b^2 = 49 

\displaystyle \frac{x^2}{36} - \frac{y^2}{45} = 1

75x

This is the equation of the required hyperbola.

\\

(vi) Given foci at \displaystyle (\pm 2,0 ) and eccentricity is \displaystyle 3/2

The foci of the hyperbola is \displaystyle (\pm ae, 0).

Therefore \displaystyle ae = 2  

\displaystyle \Rightarrow a \times \frac{3}{2} = 2

\displaystyle \Rightarrow a = \frac{4}{3}

\displaystyle \Rightarrow a^2 = \frac{16}{9}

We know \displaystyle b^2 = a^2 ( e^2 -1)

\displaystyle \Rightarrow b^2 = \frac{16}{9} ( \frac{9}{4} - 1) = \frac{20}{9}

\displaystyle \text{Substituting } a^2 = \frac{16}{9} \text{ and } b^2 = \frac{20}{9}  

\displaystyle \frac{x^2}{\frac{16}{9}} - \frac{y^2}{\frac{20}{9}} = 1

\displaystyle \Rightarrow \frac{x^2}{4} - \frac{y^2}{5} = \frac{4}{9}

76x

This is the equation of the required hyperbola.

\\

Question 8: Find the eccentricity of the hyperbola, the length of whose conjugate axis is \displaystyle \frac{3}{4} of the length of transverse axis.

Answer:

Let \displaystyle 2a and \displaystyle 2b be the transverse and conjugate axes and e be the eccentricity. Then,

\displaystyle \text{The length of the conjugate axis } = \frac{3}{4} [ \text{ length of the transverse axis } ]

\displaystyle \Rightarrow 2b = \frac{3}{4} ( 2a)

\displaystyle \Rightarrow \frac{b}{a} = \frac{3}{4}

\displaystyle \Rightarrow \frac{b^2}{a^2} = \frac{9}{16}

\displaystyle \text{Now, } e = \sqrt{1 +\frac{b^2}{a^2} } = \sqrt{1 +\frac{9}{16} } = \sqrt{\frac{25}{16}} = \frac{5}{4}

\displaystyle \text{Hence } e = \frac{5}{4}

\\

Question 9: Find the equation of the hyperbola whose

(i) focus is at \displaystyle (5,2), vertex at \displaystyle (4,2) and center at \displaystyle (3,2)

(ii) focus is at \displaystyle (4,2), center at \displaystyle (6,2) and \displaystyle e = 2.

Answer:

(i) Given focus is at \displaystyle (5,2), vertex at \displaystyle (4,2) and center at \displaystyle (3,2)

Let \displaystyle (x_1, y_1) be the coordinate of the second vertex.

We know that the vertex of the hyperbola is the mid point of the line joining the two vertices.

\displaystyle \therefore \frac{x_1+4}{2}= 3 \text{ and } \frac{y_1+2}{2}= 2

\displaystyle \Rightarrow x_1 = 2 \text{ and } y_1 = 2

Therefore the coordinates of the second vertex is \displaystyle (2, 2 )

Let \displaystyle 2a and \displaystyle 2b be the length of transverse and conjugate axes and let \displaystyle e be the eccentricity. The the equation of the hyperbola is

\displaystyle \frac{(x-3)^3}{a^2} - \frac{(y-2)^2}{b^2} = 1 \ \ \ \text{   ... ... ... ... ... i) }

Now, the distance between the two vertices \displaystyle = 2a

\displaystyle \Rightarrow \sqrt{ (4-2)^2 + ( 2-2)^2} = 2a

\displaystyle \Rightarrow \sqrt{2^2} = 2a

\displaystyle \Rightarrow 2a = 2 

\displaystyle \Rightarrow a = 1

Now, the distance between the vertex and focus is \displaystyle = ae - a

\displaystyle \Rightarrow \sqrt{ (5-4)^2 + ( 2-2)^2} = ae - a

\displaystyle \Rightarrow \sqrt{1^2} = ae - a

\displaystyle \Rightarrow 1 \times e - 1 = 1

\displaystyle \Rightarrow e = 2

Now, \displaystyle b^2 = a^2 ( e^2 -1) = 1^2 ( 2^2 -1) = 3

Substituting \displaystyle a^2 = 1 and \displaystyle ^2 = 3 in equation i) we get

\displaystyle \frac{(x-3)^3}{1} - \frac{(y-2)^2}{3} = 1

\displaystyle \Rightarrow \frac{3(x-3)^2-(y-2)^2}{3} = 1

\displaystyle \Rightarrow 3(x-3)^2 - (y-2)^2 = 3

91

This is the equation of the required hyperbola.

\\

(ii) Given focus is at \displaystyle (4,2), center at \displaystyle (6,2) and \displaystyle e = 2

Let \displaystyle (x_1, y_1) be the coordinate of the second focus of the hyperbola.

We know that the vertex of the hyperbola is the mid point of the line joining the two foci.

\displaystyle \therefore \frac{x_1+4}{2}= 6 \text{ and } \frac{y_1+2}{2}= 2

\displaystyle \Rightarrow x_1 = 8 \text{ and } y_1 = 2

Therefore the coordinates of the second focus is \displaystyle (8, 2 )

Let \displaystyle 2a and \displaystyle 2b be the length of transverse and conjugate axes and let \displaystyle e be the eccentricity. The the equation of the hyperbola is

\displaystyle \frac{(x-6)^3}{a^2} - \frac{(y-2)^2}{b^2} = 1 \ \ \ \text{   ... ... ... ... ... i) }

Now, the distance between the two vertices \displaystyle = 2a

\displaystyle \Rightarrow \sqrt{ (8-4)^2 + ( 2-2)^2} = 2a

\displaystyle \Rightarrow \sqrt{2^2} = 2a

\displaystyle \Rightarrow 2a = 2

\displaystyle \Rightarrow a = 1

Given \displaystyle e = 2

Now, \displaystyle b^2 = a^2 ( e^2 -1) = 1^2 ( 2^2 -1) = 3

Substituting \displaystyle a^2 = 1 and \displaystyle ^2 = 3 in equation i) we get

\displaystyle \frac{(x-6)^3}{1} - \frac{(y-2)^2}{3} = 1

\displaystyle \Rightarrow \frac{3(x-6)^2-(y-2)^2}{3} = 1

\displaystyle \Rightarrow 3(x-6)^2 - (y-2)^2 = 3

92

This is the equation of the required hyperbola.

\\

Question 10: If \displaystyle P is any point on the hyperbola whose axis are equal, prove that \displaystyle SP.SP = CP^2

Answer:

\displaystyle \text{Equation of the hyperbola is } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

If the axes of the hyperbola are equal, then \displaystyle a = b

The, the equation of hyperbola becomes \displaystyle x^2 - y^2 = a^2

\displaystyle \therefore b^2 = a^2 ( e^2 - 1)

\displaystyle \Rightarrow a^2 = a^2 ( e^2 -1 )

\displaystyle \Rightarrow 1 = ( e^2 -1 )

\displaystyle \Rightarrow e^2 = 2

\displaystyle \Rightarrow e = \sqrt{2}

Thus the center \displaystyle C(0,0) and the focus are given by \displaystyle S(\sqrt{2} a , 0) and \displaystyle S'(-\sqrt{2}a, 0) respectively

Let \displaystyle P ( \alpha, \beta) be any point on hyperbola. Therefore it will satisfy the equation. We get,

\displaystyle \alpha^2 - \beta^2 = a^2

\displaystyle \therefore SP^2 = ( \sqrt{2}a - \alpha)^2 + \beta^2

\displaystyle \Rightarrow SP^2 = 2a^2 + \alpha^2 - 2 \sqrt{2} a \alpha + \beta^2

\displaystyle S'P^2= ( -\sqrt{2} a  - \alpha)^2 + \beta^2

\displaystyle \Rightarrow S'P^2 = 2a^2 + \alpha^2 + 2 \sqrt{2} a \alpha + \beta^2

Now, \displaystyle SP^2 \cdot S'P^2 = (2a^2 + \alpha^2 - 2 \sqrt{2} a \alpha + \beta^2)(2a^2 + \alpha^2 + 2 \sqrt{2} a \alpha + \beta^2)

\displaystyle = 4a^2 + 4a^2 (\alpha^2 + \beta^2)+ (\alpha^2 + \beta^2)^2 - 8a^2\alpha^2

\displaystyle = 4a^2 ( a^2 - 2\alpha^2) + 4a^2 (\alpha^2 + \beta^2) + (\alpha^2 + \beta^2)^2

\displaystyle = 4a^2 ( \alpha^2 - \beta^2 - 2 \alpha^2) + 4a^2(\alpha^2 + \beta^2) + (\alpha^2 + \beta^2)^2

\displaystyle = -4a^2 (\alpha^2 + \beta^2)+ 4a^2(\alpha^2 + \beta^2) + (\alpha^2 + \beta^2)^2

\displaystyle = (\alpha^2 + \beta^2)^2

\displaystyle = CP^4

\displaystyle \therefore SP \cdot S'P = CP^2

\\

Question 11: In each of the following find the equations of the hyperbola satisfying the given conditions:

(i) vertices \displaystyle (\pm 2, 0), foci \displaystyle (\pm 3, 0)

(ii) vertices \displaystyle (0, \pm 5), foci \displaystyle (0, \pm 8)

(iii) vertices \displaystyle (0, \pm 3), foci \displaystyle (0, \pm 5)

(iv) foci \displaystyle (\pm 5, 0), transverse axis \displaystyle = 8

(v) foci \displaystyle (0, \pm 13), conjugate axis \displaystyle =24

(vi) foci \displaystyle (\pm 3\sqrt{5}, 0) the latus-rectum \displaystyle = 8

(vii) foci \displaystyle (\pm 4, 0), the latus-rectum \displaystyle = 12

(viii) vertices \displaystyle (0, \pm 6) , e = \frac{5}{3}

(ix) foci \displaystyle ( 0, \pm \sqrt{10}), passing through \displaystyle (2, 3)

(x) foci \displaystyle ( 0, \pm \sqrt{12}), latus-rectum \displaystyle = 36

Answer:

(i) Given vertices \displaystyle (\pm 2, 0), foci \displaystyle (\pm 3, 0)

\displaystyle \text{Let the equation of the hyperbola be  } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{   ... ... ... ... ... i)}

The coordinates of its vertices and foci are \displaystyle ( \pm a, 0) and \displaystyle ( \pm ae, 0) respectively.

\displaystyle \therefore a = 2 \text{ and } a^2 = 4

\displaystyle \text{Also } ae = 3 \Rightarrow e = \frac{3}{2}

\displaystyle \text{Now, } b^2 = a^2(e^2 -1) = 2^2 \Big( \Big(\frac{3}{2} \Big)^2 - 1 \Big) = 4 \Big( \frac{9-4}{4} \Big) = 4 \times \frac{5}{4} = 5

Substituting \displaystyle a^2 = 4 and \displaystyle b^2 = 5 in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{4} - \frac{y^2}{5} = 1

111

This is the equation of the required hyperbola.

\\

(ii) Given vertices \displaystyle (0, \pm 5), foci \displaystyle (0, \pm 8)

Since the vertices lie on y-axis, so let the equation of the required hyperbola be

\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \text{   ... ... ... ... ... i)}

The coordinates of its vertices and foci are \displaystyle ( 0, \pm b) and \displaystyle ( 0, \pm ae) respectively.

\displaystyle \therefore b = 5 \text{ and } b^2 = 25

\displaystyle \text{Also } be = 8 \Rightarrow e = \frac{8}{5}

\displaystyle \text{Now, } a^2 = b^2(e^2 -1) = 25 \Big( \Big(\frac{8}{5} \Big)^2 - 1 \Big) = 25 \Big( \frac{39}{25} \Big) = 39

Substituting \displaystyle a^2 = 39 and \displaystyle b^2 = 25 in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{39} - \frac{y^2}{25} = -1

112

This is the equation of the required hyperbola.

\\

(iii) Given vertices \displaystyle (0, \pm 3), foci \displaystyle (0, \pm 5)

Since the vertices lie on y-axis, so let the equation of the required hyperbola be

\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \text{   ... ... ... ... ... i)}

The coordinates of its vertices and foci are \displaystyle ( 0, \pm b) and \displaystyle ( 0, \pm ae) respectively.

\displaystyle \therefore b = 3 \text{ and } b^2 = 9

\displaystyle \text{Also } be = 5 \Rightarrow e = \frac{5}{3}

\displaystyle \text{Now, } a^2 = b^2(e^2 -1) = 9 \Big( \Big(\frac{5}{3} \Big)^2 - 1 \Big) = 9 \Big( \frac{16}{9} \Big) = 16

Substituting \displaystyle a^2 = 16 and \displaystyle b^2 = 9 in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{16} - \frac{y^2}{9} = -1

113

This is the equation of the required hyperbola.

\\

(iv) Given foci \displaystyle (\pm 5, 0), transverse axis \displaystyle = 8

\displaystyle \text{Let the equation of the hyperbola be  } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{   ... ... ... ... ... i)}

The coordinates of its vertices and foci are \displaystyle ( \pm a, 0) and \displaystyle ( \pm ae, 0) respectively.

Length of transverse axis = 8

\displaystyle \therefore 2a = 8 \Rightarrow a = 4 \text{ and } a^2 = 16

\displaystyle \text{Also } ae = 5 \Rightarrow e = \frac{5}{4}

\displaystyle \text{Now, } b^2 = a^2(e^2 -1) = 4^2 \Big( \Big(\frac{5}{4} \Big)^2 - 1 \Big) = 16 \Big( \frac{25-16}{16} \Big) = 16 \times \frac{9}{16} = 9

Substituting \displaystyle a^2 = 16 and \displaystyle b^2 = 9 in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{16} - \frac{y^2}{9} = 1

114

This is the equation of the required hyperbola.

\\

(v) Given foci \displaystyle (0, \pm 13), conjugate axis \displaystyle =24

Since the vertices lie on x-axis, so let the equation of the required hyperbola be

\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \text{   ... ... ... ... ... i)}

The length of the conjugate axis of the required hyperbola is 24

\displaystyle \therefore 2a = 25 \Rightarrow a = 12 \text{ and } a^2 = 144

The coordinates of foci of the required hyperbola is (0, \pm be)

\displaystyle \text{Also } be = 13 

\displaystyle \text{Now, } a^2 = b^2(e^2 -1) \Rightarrow 144 = 169 - b^2 \Rightarrow b^2 = 25

Substituting \displaystyle a^2 = 144 and \displaystyle b^2 = 25 in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{144} - \frac{y^2}{25} = -1

115

This is the equation of the required hyperbola.

\\

(vi) Given foci \displaystyle (\pm 3\sqrt{5}, 0) the latus-rectum \displaystyle = 8

Since the vertices lie on x-axis, so let the equation of the required hyperbola be

\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{   ... ... ... ... ... i)}

The length of the conjugate axis of the required hyperbola is \displaystyle 8.

\displaystyle \therefore \frac{2b^2}{a} = 8

\displaystyle \Rightarrow b^2 = 4a \text{   ... ... ... ... ... ii)}

Now, the coordinates  of foci of the required hyperbola is \displaystyle ( \pm ae , 0)

\displaystyle \therefore ae = 3\sqrt{5}

\displaystyle \Rightarrow e = \frac{3\sqrt{5}}{a}

\displaystyle \Rightarrow e^2 = \frac{45}{a^2} \text{   ... ... ... ... ... iii)}

\displaystyle \text{Now, } b^2 = a^2 ( e^2 - 1)

\displaystyle \Rightarrow 4a = a^2e^2 - a^2

\displaystyle \Rightarrow 4a = a^2 \times \frac{45}{a^2} - a^2

\displaystyle \Rightarrow a^2 + 4a - 45 = 0

\displaystyle \Rightarrow a(a+9) - 5(a+9) = 0

\displaystyle \Rightarrow (a-5)(a+9) = 0

\displaystyle \Rightarrow a = 5

\displaystyle \Rightarrow a^2 = 25

\displaystyle \Rightarrow b^2 = 4 \times 5 = 20

Substituting \displaystyle a^2 = 25 and \displaystyle b^2 = 20 in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{25} - \frac{y^2}{20} = 1

116

This is the equation of the required hyperbola.

\\

(vii) Given foci \displaystyle (\pm 4, 0), the latus-rectum \displaystyle = 12

Since the vertices lie on x-axis, so let the equation of the required hyperbola be

\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{   ... ... ... ... ... i)}

The length of the latus-rectum of the required hyperbola is \displaystyle 12.

\displaystyle \therefore \frac{2b^2}{a} = 12

\displaystyle \Rightarrow b^2 = 6a \text{   ... ... ... ... ... ii)}

Now, the coordinates  of foci of the required hyperbola is \displaystyle ( \pm ae , 0)

\displaystyle \therefore ae = 4

\displaystyle \Rightarrow e = \frac{4}{a}

\displaystyle \Rightarrow e^2 = \frac{16}{a^2} \text{   ... ... ... ... ... iii)}

\displaystyle \text{Now, } b^2 = a^2 ( e^2 - 1)

\displaystyle \Rightarrow 6a = a^2e^2 - a^2

\displaystyle \Rightarrow 6a = a^2 \times \frac{16}{a^2} - a^2

\displaystyle \Rightarrow a^2 + 6a - 16 = 0

\displaystyle \Rightarrow a(a+8) - 2(a+8) = 0

\displaystyle \Rightarrow (a+8)(a-2) = 0 \ \ \ \text{ length cannot be negative } \therefore a+8 \neq 0

\displaystyle \Rightarrow a = 2

\displaystyle \Rightarrow a^2 = 4

\displaystyle \Rightarrow b^2 = 6 \times 2 = 12

Substituting \displaystyle a^2 = 4 and \displaystyle b^2 = 12 in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{4} - \frac{y^2}{12} = 1

117

This is the equation of the required hyperbola.

\\

(viii) Given vertices \displaystyle (0, \pm 6) , e = \frac{5}{3}

Since the vertices lie on x-axis, so let the equation of the required hyperbola be

\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{   ... ... ... ... ... i)}

The length of the vertices of the required hyperbola is \displaystyle (\pm a, 0).

\displaystyle \therefore a = 7

\displaystyle \Rightarrow a^2 = 49 \text{   ... ... ... ... ... ii)}

\displaystyle \text{Now, } b^2 = a^2 ( e^2 - 1)

\displaystyle \Rightarrow b^2 = 49 \Big[ \Big(\frac{4}{3} \Big)^2 - 1 \Big] \hspace{1.0cm} \Big[ \because e = \frac{4}{3} \Big]

\displaystyle \Rightarrow b^2 = 49 \Big[ \frac{16}{9} -1 \Big]

\displaystyle \Rightarrow b^2 = 49 \Big[ \frac{7}{9} \Big]

\displaystyle \Rightarrow b^2 = \frac{343}{9}

Substituting \displaystyle a^2 = 49 and \displaystyle b^2 = \frac{343}{9} in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{49} - \frac{9y^2}{343} = 1

118

This is the equation of the required hyperbola.

\\

(ix) Given foci \displaystyle ( 0, \pm \sqrt{10}), passing through \displaystyle (2, 3)

Since the vertices lie on y-axis, so let the equation of the required hyperbola be

\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \text{   ... ... ... ... ... i)}

It passes through \displaystyle ( 2, 3). Therefore

\displaystyle \frac{2^2}{a^2} - \frac{3^2}{b^2} = -1

\displaystyle \Rightarrow \frac{4}{a^2} - \frac{9}{b^2} = -1

\displaystyle \Rightarrow \frac{4}{a^2} - \frac{9}{a^2 ( e^2 - 1)} = -1  \text{   ... ... ... ... ... ii)}

The coordinates of the foci for the required hyperbola are \displaystyle ( 0, \pm ae)

\displaystyle \therefore ae = \sqrt{10}

\displaystyle \Rightarrow a^2 e^2 = 10 \text{   ... ... ... ... ... iii)}

Substituting \displaystyle a^2 e^2 = 10 in equation ii) we get

\displaystyle \frac{4}{a^2} - \frac{9}{10-a^2} = -1

\displaystyle \Rightarrow \frac{4(10-a^2) - 9(a^2)}{a^2(10-a^2)} = -1

\displaystyle \Rightarrow \frac{40-4a^2-9a^2}{10a^2 - a^4}= -1

\displaystyle \Rightarrow 40-13a^2= - 10a^2 + a^4

\displaystyle \Rightarrow a^4 + 3a^2 - 40 = 0

\displaystyle \Rightarrow a^4 + 8a^2 - 5a^2 - 40 = 0

\displaystyle \Rightarrow  a^2 ( a^2 + 8) - 5 ( a^2 + 8) = 0

\displaystyle \Rightarrow (a^2+8)(a^2-5) = 0

\displaystyle \Rightarrow a^2 = 5   \hspace{2.0cm} [ \because a^2 \text{ cannot be negative } ]

\displaystyle \text{Now, } b^2 = a^2 ( e^2 -1) = a^2e^2 - a^2 = 10-5 = 5

Substituting \displaystyle a^2 = 5 and \displaystyle b^2 = 5 in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{5} - \frac{9y^2}{5} = -1

119

This is the equation of the required hyperbola.

\\

(x) Given foci \displaystyle ( 0, \pm \sqrt{12}), latus-rectum \displaystyle = 36

Since the vertices lie on y-axis, so let the equation of the required hyperbola be

\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \text{   ... ... ... ... ... i)}

The length of the latus-rectum of the required hyperbola is \displaystyle 36.

\displaystyle \therefore \frac{2a^2}{b} = 36

\displaystyle \Rightarrow a^2 = 18b \text{   ... ... ... ... ... ii)}

The coordinates of foci of the required hyperbola are \displaystyle ( 0, \pm be)

\displaystyle \therefore be = 12

\displaystyle \Rightarrow e = \frac{12}{b}

\displaystyle \Rightarrow e^2 = \frac{144}{b^2}

\displaystyle \text{Now, } a^2 = b^2 ( e^2 - 1)

\displaystyle \Rightarrow 18b = b^2 (\frac{144}{b^2} - 1)

\displaystyle \Rightarrow 18b = 144 - b^2

\displaystyle \Rightarrow b^2 + 18b - 144 = 0

\displaystyle \Rightarrow (b-6)(b+24) = 0

\displaystyle \Rightarrow b = 6, =24

Considering positive value of \displaystyle b = 6

Therefore \displaystyle a^2 = 18 ( 6) = 108

Substituting \displaystyle a^2 = 108 and \displaystyle b^2 = 36 in equation i) we get the equation of the required hyperbola

\displaystyle \frac{x^2}{108} - \frac{9y^2}{36} = -1

\displaystyle \Rightarrow 3y^2 - x^2 = 108

1110

This is the equation of the required hyperbola.

\\

Question 12: If the distance between the foci of a hyperbola is \displaystyle 16 and its eccentricity is \displaystyle \sqrt{2} , then obtain its equation.

Answer:

Eccentricity is \displaystyle \sqrt{2}

Distance between foci

\displaystyle 2ae = 16

12\displaystyle \Rightarrow 2a (\sqrt{2}) = 16

\displaystyle \Rightarrow a = 4\sqrt{2}

\displaystyle e = \frac{\sqrt{a^2+b^2}}{a}

\displaystyle \sqrt{2} = \frac{\sqrt{32+b^2}}{4\sqrt{2}}

\displaystyle 8 = \sqrt{32+b^2}

\displaystyle \Rightarrow b^2 = 32

Therefore the equation of hyperbola is

\displaystyle \frac{x^2}{32}-\frac{y^2}{32}= 1

\displaystyle \Rightarrow x^2 - y^2 = 32

\\

Question 13: Show that the set of all points such that the difference of their distances from \displaystyle (4,0) and \displaystyle (- 4,0) is always equal to \displaystyle 2 represents a hyperbola.

Answer:

Let \displaystyle P(x, y) be a point of the set.

Distance of \displaystyle P(x, y) from \displaystyle (4, 0) = \sqrt{(x-4)^2 + ( y-0)^2}

Distance of \displaystyle P(x, y) from \displaystyle (-4, 0) = \sqrt{(x+4)^2 + ( y-0)^2}

The difference between the distances \displaystyle = 2

\displaystyle \therefore \sqrt{(x-4)^2 + ( y-0)^2} - \sqrt{(x+4)^2 + ( y-0)^2} = 2

\displaystyle \Rightarrow \sqrt{(x-4)^2 + ( y-0)^2} = 2 +  \sqrt{(x+4)^2 + ( y-0)^2}

Squaring both sides we get

\displaystyle (x-4)^2 + y^2 = 4 + (x+4)^2 + y^2 + 4\sqrt{(x+4)^2 + y^2}

\displaystyle \Rightarrow (x-4)^2 - (x+4)^2 = 4 + 4\sqrt{(x+4)^2 + y^2}

\displaystyle \Rightarrow ( x-4-x-4)(x-4+x+4)= 4 + 4\sqrt{(x+4)^2 + y^2}

\displaystyle \Rightarrow -8(2x) = 4 + 4\sqrt{(x+4)^2 + y^2}

\displaystyle \Rightarrow -16x= 4 + 4\sqrt{(x+4)^2 + y^2}

\displaystyle \Rightarrow -4x - 1 = \sqrt{(x+4)^2 + y^2}

Squaring both sides, we get

\displaystyle 16x^2 + 8x + 1 = x^2 + 8x + 16 + y^2

\displaystyle \Rightarrow 15x^2 - y^2 = 15

13

This is the equation of the required hyperbola.