Question 1: Check the validity of the following statements:
Answer:
(i) p :100 is a multiple of 4 and 5. $
Since, 100 is a multiple of 4 and 5, the statement is true. Hence, it is a valid statement.
(ii) q: 125 is a multiple of 5 and7. $
Since, 125 is a multiple of 5 but not a multiple of 7, the statement is not true. Hence, it is not a valid statement.
(iii) r: 60 is a multiple of 3 or 5. $
Since, 60 is a multiple of 3 and 5, the statement is true. Hence, it is a valid statement.
Question 2: Check whether the following statement are true or not:
Answer:
(i) If
and
are odd integers, then
is an even integer.
Let us assume that and
be the statements given by
and
are odd integers.
is an even integer
the given statement can be written as :
if then
Let be true. Then,
and
are odd integers
for some integers
is an integer
is true.
So, is true and
is true.
Hence, “if p, then q “is a true statement.
(ii) if
are integer such that
is even, then at least one of
and
is an even integer.
Let us assume that and
be the statements given by
and
are integers and
is an even integer.
At least one of
and
is even.
Let be true, and then
is an even integer.
So,
Now,
Let
Since, is an even integer,
is also an even integer.
Now take
So, it is also true.
Hence, the statement is true.
Question 3: Show that the statement: is true by
(i) direct method (ii) method of contrapositive (iii) method of contradiction.
Answer:
(i) direct method
Let us assume that and
be the statements given by
is a real number such that
The given statement can be written as:
if then
Let be true. Then,
is a real number such that
is a real number such that
is true
Thus, is true
Therefore, is true and
is true.
Hence, is true.
(ii) Method of Contrapositive:
Let be false. Then,
is not true
is not true
Thus,
Hence, and
is true
(iii) Method of Contradiction:
If possible, let be false.
Then, is not true
is true
is true
and
is true
is a real number such that
This is a contradiction.
Hence, is true.
Question 4: Show that the following statement is true by the method of contrapositive:
Answer:
Let us assume that and
be the statements given
is an integer and
is odd.
is an odd integer.
The given statement can be written as:
if
then
Let be false.
Then, is not an odd integer, then
is an even integer
for some integer n
is an even integer
Thus, is False
Therefore, is false and
is false
Hence, “ if
then
” is a true statement.
Question 5: Show that the following statement is true “The integer is even if and only if
is even”
Answer:
Let the statements,
Integer
is even
If
is even Let
be true. Then,
Let
Squaring both the sides, we get,
is an even number.
So, is true when
is true.
Hence, the given statement is true.
Question 6: By giving a counter example, show that the following statement is not true.
p: “If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle”
Answer:
Let be triangle in which
then the
is not an obtuse angled triangle.
Therefore given statement is not true.
Question 7: Which of the following statements are true and which are false? In each case give a valid reason for saying so:
Answer:
(i) Each radius of a circle is a chord of the circle.
The given statement is false.
According the the definition of a chord, it should intersect the circumference of a circle at two distinct points.
(ii) The center of a circle bisects each chord of the circle.
The given statement is false.
If a chord is not a diameter of a circle, then the center does not bisect that chord. In other words, the center of a circle only bisects the diameter, which is the chord of the circle.
(iii) Circle is a particular case of an ellipse.
The statement is true.
If we put then we obtain
which is the equation of a circle. Therefore, a circle is a particular case of an ellipse.
(iv) If
and
are integers such that
then
The statement is true.
(By the rule of inequality)
(v) is a rational number.
The given statement is false.
11 is a prime number and we know that the square root of any prime number is an irrational number. Therefore is an irrational number.
Question 8: Determine whether the argument used to check the validity of the following statement is correct:
The statement is true because the number is irrational, therefore
is irrational.
Answer:
Argument Used: is irrational, therefore
is irrational.
“If
is irrational, then
is rational.”
Let us take an irrational number given by where k is a rational number.
Squaring both sides, we get,
is a rational number and contradicts our statement.
Hence, the given argument is wrong.