Note: 

———————————————————————————————————————————–

We have,

\displaystyle \lim \limits_{x \to a} \frac{x^m-a^m}{x^n-a^n}

\displaystyle = \lim \limits_{x \to a} \Bigg\{    \frac{x^m-a^m}{x-a}  \times \frac{x-a}{x^n-a^n}  \Bigg\}

\displaystyle = \lim \limits_{x \to a} \Bigg\{    \frac{x^m-a^m}{x-a}  \div \frac{x^n-a^n}{x-a}  \Bigg\}

\displaystyle = \lim \limits_{x \to a} \frac{x^m-a^m}{x-a} \div \lim \limits_{x \to a} \frac{x^n-a^n}{x-a}

\displaystyle = ma^{m-1} \div na^{n-1}

\displaystyle = \frac{m}{n} a^{m-n}

———————————————————————————————————————————–

\displaystyle \text{Question 1: }  \lim \limits_{x \to a} \frac{(x+2)^\frac{5}{2} - ( a+2)^\frac{5}{2}}{x-a }

Answer:

We have,

\displaystyle \lim \limits_{x \to a} \frac{(x+2)^\frac{5}{2} - ( a+2)^\frac{5}{2}}{x-a }

\displaystyle \text{Let } y = x+2 \text{ and } b = a+2

\displaystyle \text{When } x \rightarrow a, \text{ then } x+2 \rightarrow a+2 \Rightarrow y \rightarrow b

\displaystyle = \lim \limits_{y \to b} \frac{y^\frac{5}{2} - b^\frac{5}{2}}{y-b }

\displaystyle = \frac{5}{2} b^{\frac{5}{2}-1}

\displaystyle = \frac{5}{2} b^{\frac{3}{2}}

\displaystyle = \frac{5}{2} (a+2)^{\frac{3}{2}}

\\

\displaystyle \text{Question 2: }  \lim \limits_{x \to a} \frac{(x+2)^\frac{3}{2} - ( a+2)^\frac{3}{2}}{x-a }

Answer:

We have,

\displaystyle \lim \limits_{x \to a} \frac{(x+2)^\frac{3}{2} - ( a+2)^\frac{3}{2}}{x-a }

\displaystyle \text{Let } y = x+2 \text{ and } b = a+2

\displaystyle \text{When } x \rightarrow a, \text{ then } x+2 \rightarrow a+2 \Rightarrow y \rightarrow b

\displaystyle = \lim \limits_{y \to b} \frac{y^\frac{3}{2} - b^\frac{3}{2}}{y-b }

\displaystyle = \frac{3}{2} b^{\frac{3}{2}-1}

\displaystyle = \frac{3}{2} b^{\frac{1}{2}}

\displaystyle = \frac{3}{2} (a+2)^{\frac{1}{2}}

\\

\displaystyle \text{Question 3: }  \lim \limits_{x \to 0} \frac{(1+x)^6-1}{(1+x)^2-1 }

Answer:

We have,

\displaystyle \lim \limits_{x \to 0} \frac{(1+x)^6-1}{(1+x)^2-1 }

\displaystyle = \lim \limits_{x \to 0} \Bigg\{    \frac{(1+x)^6-1}{x}  \times \frac{x}{(1+x)^2-1}  \Bigg\}

\displaystyle = \lim \limits_{x \to 0} \Bigg\{    \frac{(1+x)^6-1^6}{(1+x) - 1}  \times \frac{(1+x)-1}{(1+x)^2-1^2}  \Bigg\}

\displaystyle \text{Let } y = 1+x 

\displaystyle \text{When } x \rightarrow 0, \text{ then } 1+x \rightarrow 1 \Rightarrow y \rightarrow 1

\displaystyle = \lim \limits_{x \to 0} \Bigg\{    \frac{y^6-1^6}{y - 1}  \times \frac{y-1}{y^2-1^2}  \Bigg\}

\displaystyle = \frac{6}{2} ( 1^{6-2} )

\displaystyle = 3

\\

\displaystyle \text{Question 4: }  \lim \limits_{x \to a} \frac{x^\frac{2}{7} - a^\frac{2}{7}}{x-a }

Answer:

We have,

\displaystyle \lim \limits_{x \to a} \frac{x^\frac{2}{7} - a^\frac{2}{7}}{x-a }

\displaystyle = \frac{2}{7}a^{\frac{2}{7}-1} 

\displaystyle = \frac{2}{7} a^{\frac{-5}{7}}

\\

\displaystyle \text{Question 5: }  \lim \limits_{x \to a} \frac{x^\frac{5}{7} - a^\frac{5}{7}}{x^\frac{2}{7} - a^\frac{2}{7} }

Answer:

\displaystyle \text{We have }  \lim \limits_{x \to a} \frac{x^\frac{5}{7} - a^\frac{5}{7}}{x^\frac{2}{7} - a^\frac{2}{7} }

\displaystyle = \Bigg\{ \lim \limits_{x \to a} \frac{x^\frac{5}{7} - a^\frac{5}{7}}{x-a} \times \frac{x-a}{x^\frac{2}{7} - a^\frac{2}{7} } \Bigg\}

\displaystyle = \Bigg\{ \lim \limits_{x \to a} \frac{x^\frac{5}{7} - a^\frac{5}{7}}{x-a} \div \frac{x^\frac{2}{7} - a^\frac{2}{7} }{x-a} \Bigg\}

\displaystyle = \frac{5}{7} a^{\frac{5}{7}-1} \div \frac{2}{7} a^{\frac{2}{7}-1}

\displaystyle = \frac{5}{7} a^{\frac{-2}{7}} \div \frac{2}{7} a^{\frac{-5}{7}}

\displaystyle = \frac{5}{2} a^{\frac{-2}{7} +\frac{-5}{7} }

\displaystyle = \frac{5}{2}  a^\frac{3}{7}

\\

\displaystyle \text{Question 6: } \lim \limits_{x \to -\frac{1}{2}} \frac{8x^3+1}{2x+1 }

Answer:

\displaystyle \text{We have } \lim \limits_{x \to -\frac{1}{2}} \frac{8x^3+1}{2x+1 }

\displaystyle = \lim \limits_{x \to -\frac{1}{2}} \frac{(2x)^3-(-1)^3}{2x-(-1) }

\displaystyle \text{Let } y = 2x 

\displaystyle \text{When } x \rightarrow -\frac{1}{2}, \text{ then } 2x \rightarrow -1 

\displaystyle = \lim \limits_{x \to -\frac{1}{2}} \frac{y^3-(-1)^3}{y-(-1) }

\displaystyle = 3 (-1)^{3-1}

\displaystyle = 3 (-1)^2

\displaystyle = 3

\\

\displaystyle \text{Question 7: }  \lim \limits_{x \to 27} \frac{(x^\frac{1}{3}+3)(x^\frac{1}{3}-3)}{ x-27}

Answer:

\displaystyle \text{We have, }  \lim \limits_{x \to 27} \frac{(x^\frac{1}{3}+3)(x^\frac{1}{3}-3)}{ x-27}

\displaystyle =  \lim \limits_{x \to 27} \frac{((x^\frac{1}{3})^2-3^2)}{ (x^\frac{1}{3})^3-3^3}

\displaystyle \text{When } x \rightarrow 27, \text{ then } x^\frac{1}{3} \rightarrow 3

\displaystyle \text{Let } y = x^\frac{1}{3}

\displaystyle =  \lim \limits_{y\to 3} \frac{(y^2-3^2)}{ (y^3-3^3}

\displaystyle = \frac{2}{3} (3)^{2-3}

\displaystyle = \frac{2}{9}

\\

\displaystyle \text{Question 8: }  \lim \limits_{x \to 4} \frac{x^3-64}{x^2-16 }

Answer:

\displaystyle \text{We have, }  \lim \limits_{x \to 4} \frac{x^3-64}{x^2-16 }

\displaystyle = \lim \limits_{x \to 4} \frac{x^3-4^3}{x^2-4^2 }

\displaystyle = \lim \limits_{x \to 4} \Bigg\{    \frac{x^3-4^3}{x-4}  \times \frac{x-4}{x^2-4^2}  \Bigg\}

\displaystyle = \lim \limits_{x \to 4} \Bigg\{    \frac{x^3-4^3}{x-4}  \div \frac{x^2-4^2}{x-4}  \Bigg\}

\displaystyle = 3(4)^{3-1} \div 2(4)^{2-1}

\displaystyle = \frac{3 \times 16}{2 \times 4}

\displaystyle = 6

\\

\displaystyle \text{Question 9: }  \lim \limits_{x \to 1} \frac{x^{15}-1}{ x^{10}-1}

Answer:

\displaystyle \text{We have, } \lim \limits_{x \to 1} \frac{x^{15}-1}{ x^{10}-1}

\displaystyle = \lim \limits_{x \to 1} \Bigg\{    \frac{x^{15}-1^{15}}{x-1}  \times \frac{x-1}{x^{10}-1^{10}}  \Bigg\}

\displaystyle = \lim \limits_{x \to 1} \Bigg\{    \frac{x^{15}-1^{15}}{x-1}  \div \frac{x^{10}-1^{10}}{x-1}  \Bigg\}

\displaystyle = 15(1)^{15-1} \div 10(1)^{10-1}

\displaystyle = \frac{15}{10}

\displaystyle = \frac{3}{2}

\\

\displaystyle \text{Question 10: }  \lim \limits_{x \to -1} \frac{x^3+1}{x+1 }

Answer:

\displaystyle \text{We have, } \lim \limits_{x \to -1} \frac{x^3+1}{x+1 }

\displaystyle = \lim \limits_{x \to -1} \frac{x^3-(-1)^3}{x-(-1) }

\displaystyle = 3(-1)^{3-1}

\displaystyle = 3

\\

\displaystyle \text{Question 11: }  \lim \limits_{x \to a} \frac{x^\frac{2}{3}- a^\frac{2}{3}}{ x^\frac{3}{4}- a^\frac{3}{4}}

Answer:

\displaystyle \text{We have: }  \lim \limits_{x \to a} \frac{x^\frac{2}{3}- a^\frac{2}{3}}{ x^\frac{3}{4}- a^\frac{3}{4}}

\displaystyle= \lim \limits_{x \to a} \frac{x^\frac{2}{3}- a^\frac{2}{3}}{x-a } \times  \frac{x-a}  { x^\frac{3}{4}- a^\frac{3}{4}}

\displaystyle= \lim \limits_{x \to a} \frac{x^\frac{2}{3}- a^\frac{2}{3}}{x-a } \div  \frac{ x^\frac{3}{4}- a^\frac{3}{4}}{x-a}

\displaystyle= = \frac{2}{3} a^{\frac{2}{3}-1} \div \frac{3}{4} a^{\frac{3}{4}-1}

\displaystyle= = \frac{8}{9} a^{(-\frac{1}{3}+\frac{1}{4})}

\displaystyle= = \frac{8}{9} a^{-\frac{1}{12}}

\\

\displaystyle \text{Question 12: If }   \lim \limits_{x \to 3} \frac{x^n-3^n}{x-3 } = 108, \text{ find the value of  } n.

Answer:

\displaystyle \text{Given } \lim \limits_{x \to 3} \frac{x^n-3^n}{x-3 } = 108

\displaystyle\Rightarrow n(3)^{n-1} = 108

\displaystyle\Rightarrow n(3)^{n-1} = 4(3)^{3}

\displaystyle\Rightarrow n(3)^{n-1} = 4(3)^{4-1}

\displaystyle\Rightarrow n=4

\\

\displaystyle \text{Question 13: If }   \lim \limits_{x \to a} \frac{x^9-a^9}{x-a } = 9, \text{ find the value of  } a.

Answer:

\displaystyle \text{Given }   \lim \limits_{x \to a} \frac{x^9-a^9}{x-a } = 9, \text{ find the value of  } a.

\displaystyle\Rightarrow 9(a)^{9-1} = 9

\displaystyle\Rightarrow 9a^8 = 9

\displaystyle\Rightarrow a^8 = 1

\displaystyle\Rightarrow a = \pm 1

\\

\displaystyle \text{Question 14: If }   \lim \limits_{x \to a} \frac{x^5-3^5}{x-a } = 405, \text{ find the value of  } a.

Answer:

\displaystyle \text{Given }  \lim \limits_{x \to a} \frac{x^5-3^5}{x-a } = 405

\displaystyle\Rightarrow 5(a)^{5-1} = 405

\displaystyle\Rightarrow 5a^4 = 405

\displaystyle\Rightarrow a^4 = 81

\displaystyle\Rightarrow a = \pm 3

\\

\displaystyle \text{Question 15: If }   \lim \limits_{x \to a} \frac{x^9-a^9}{x-a } = \lim \limits_{x \to 5} (4+x), \text{ find the value of  } a.

Answer:

\displaystyle \text{Given }  \lim \limits_{x \to a} \frac{x^9-a^9}{x-a } = \lim \limits_{x \to 5} (4+x)

\displaystyle\Rightarrow 9(a)^{9-1} = 9

\displaystyle\Rightarrow a^8 = 1

\displaystyle\Rightarrow a = \pm 1

\\

\displaystyle \text{Question 16: If }   \lim \limits_{x \to a} \frac{x^3-a^3}{x-a } = \lim \limits_{x \to 1} \frac{x^4-1}{x-1} , \text{ find the value of  } a.

Answer:

\displaystyle \text{Given }  \lim \limits_{x \to a} \frac{x^3-a^3}{x-a } = \lim \limits_{x \to 1} \frac{x^4-1}{x-1}

\displaystyle\Rightarrow 3(a)^{3-1} = 4(1)^{4-1}

\displaystyle\Rightarrow 3a^2 = 4

\displaystyle\Rightarrow a^2 = \frac{4}{3}

\displaystyle\Rightarrow a = \pm \frac{2}{\sqrt{3}}