Question 1: Calculate the mean deviation about the median of the following observations:

(i) 3011, 2780, 3020, 2354, 3541, 4150, 5000

(ii) 38, 70, 48, 34, 42, 55, 63, 46, 54, 44

(iii) 34, 66, 30, 38, 44, 50, 40, 60, 42, 51

(iv) 22, 24, 30, 27, 29, 31, 25, 28, 41, 42

(v) 38, 79, 48, 34, 63, 42, 55, 44, 53, 47

Answer:

(i) 3011, 2780, 3020, 2354, 3541, 4150, 5000

\displaystyle \text{Formula used for mean deviation:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = x_i - M \text{ where } M = \text{ Median }

\displaystyle \text{Arranging the data in ascending order } 2354, 2780, 3011, 3020, 3541, 4150, 5000

\displaystyle \text{Here, Median } (M) = 3020 \text{ and } n = 7

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |

3011 9
2780 240
3020 0
2354 666
3541 521
4150 1130
5000 1980

Total

4546

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{7}  \times  4546 = 649.42

\\

(ii) 38, 70, 48, 34, 42, 55, 63, 46, 54, 44

\displaystyle \text{Formula used for mean deviation:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = x_i - M \text{ where } M = \text{ Median }

\displaystyle \text{Arranging the data in ascending order } 34, 38, 42, 44, 46, 48, 54, 55, 63, 70

\displaystyle \text{Here, Median } (M) = \frac{46+ 48}{2} = 47 \text{ and } n = 10

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |
38 9
70 23
48 1
34 13
42 5
55 8
63 16
46 1
54 7
44 3
Total 86

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  86 =8.6

\\

(iii) 34, 66, 30, 38, 44, 50, 40, 60, 42, 51

\displaystyle \text{Formula used for mean deviation:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = x_i - M \text{ where } M = \text{ Median }

\displaystyle \text{Arranging the data in ascending order } 30, 34, 38, 40, 42, 44, 50, 51, 60, 66

\displaystyle \text{Here, Median } (M) = \frac{42+ 44}{2} = 43 \text{ and } n = 10

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |
34 9
66 23
30 13
38 5
44 1
50 7
40 3
60 17
42 1
51 8
Total 87

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  87 =8.7

\\

(iv) 22, 24, 30, 27, 29, 31, 25, 28, 41, 42

\displaystyle \text{Formula used for mean deviation:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = x_i - M \text{ where } M = \text{ Median }

\displaystyle \text{Arranging the data in ascending order } 22, 24, 25, 27, 28, 29, 30, 31, 41, 42

\displaystyle \text{Here, Median } (M) = \frac{28+ 29}{2} = 28.5 \text{ and } n = 10

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |
22 6.5
24 4.5
30 1.5
27 1.5
29 0.5
31 2.5
25 3.5
28 0.5
41 12.5
42 13.5
Total 47

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  47 =4.7

\\

(v) 38, 79, 48, 34, 63, 42, 55, 44, 53, 47

\displaystyle \text{Formula used for mean deviation:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = x_i - M \text{ where } M = \text{ Median }

\displaystyle \text{Arranging the data in ascending order } 34, 38, 42, 44, 47, 48, 53, 55, 63, 70

\displaystyle \text{Here, Median } (M) = \frac{47+ 48}{2} = 47.5 \text{ and } n = 10

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |
38 9.5
70 22.5
48 0.5
34 13.5
63 15.5
42 5.5
55 7.5
44 3.5
53 5.5
47 0.5
Total 84

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  84 =8.4

\\

Question 2: Calculate the mean deviation about the mean of the following observations:

(i) 4, 7, 8, 9, 10, 12, 13, 17

(ii) 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17

(iii) 38, 70, 48, 40, 42, 55, 63, 46, 54, 44

(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

(v) 57, 64, 43, 67, 49, 59, 44, 47, 61, 59

Answer:

(i) 4, 7, 8, 9, 10, 12, 13, 17

\displaystyle \text{Formula used for mean deviation about mean:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = |x_i - \overline{x} | \text{ where } \overline{x} = \text{ Mean of the given data }

\displaystyle \overline{x} = \frac{4+ 7+ 8+ 9+ 10+ 12+ 13+ 17}{8} = 10

\displaystyle x_i

\displaystyle |d_i| = | x_i - \overline{x} |
4 6
7 3
8 2
9 1
10 0
12 2
13 3
17 7
Total 24

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{8}  \times  24 =3

\\

(ii) 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17

\displaystyle \text{Formula used for mean deviation about mean:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = |x_i - \overline{x} | \text{ where } \overline{x} = \text{ Mean of the given data }

\displaystyle \overline{x} = \frac{13+ 17+ 16+ 14+ 11+ 13+ 10+ 16+ 11+ 18+ 12+ 17}{12} = 14

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |

13 1
17 3
16 2
14 0
11 3
13 1
10 4
16 2
11 3
18 4
12 2
17 3

Total

28

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{12}  \times  28 =2.33

\\

(iii) 38, 70, 48, 40, 42, 55, 63, 46, 54, 44

\displaystyle \text{Formula used for mean deviation about mean:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = |x_i - \overline{x} | \text{ where } \overline{x} = \text{ Mean of the given data }

\displaystyle \overline{x} = \frac{38+ 70+ 48+ 40+ 42+ 55+ 63+ 46+ 54+ 44}{10} = 50

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |

38 12
70 20
48 2
40 10
42 8
55 5
63 13
46 4
54 4
44 6

Total

84

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  84 =8.4

\\

(iv) 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

\displaystyle \text{Formula used for mean deviation about mean:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = |x_i - \overline{x} | \text{ where } \overline{x} = \text{ Mean of the given data }

\displaystyle \overline{x} = \frac{36+ 72+ 46+ 42+ 60+ 45+ 53+ 46+ 51+ 49}{10} = 50

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |

36 14
72 22
46 4
42 8
60 10
45 5
53 3
46 4
51 1
49 1

Total

72

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  72 =7.2

\\

(v) 57, 64, 43, 67, 49, 59, 44, 47, 61, 59

\displaystyle \text{Formula used for mean deviation about mean:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = |x_i - \overline{x} | \text{ where } \overline{x} = \text{ Mean of the given data }

\displaystyle \overline{x} = \frac{57+ 64+ 43+ 67+ 49+ 59+ 44+ 47+ 61+ 59}{10} = 55

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |

57 2
64 9
43 12
67 12
49 6
59 4
44 11
47 8
61 6
59 4

Total

74

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  74 =7.4

\\

Question 3: Calculate the mean deviation of the following income groups of fine and seven members from their medians:

I Income in Rs.  II Income in Rs.
4000 300
4200 4000
4400 4200
4600 4400
4800 4600
4800
5800

Answer:

1st Data Set

\displaystyle \text{Formula used for mean deviation:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = x_i - M \text{ where } M = \text{ Median }

\displaystyle \text{Arranging the data in ascending order } 4000, 4200, 4400, 4600, 4800

\displaystyle \text{Here, Median } (M) = 4400 \text{ and } n = 5

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |

4000 400
4200 200
4400 0
4600 200
4800 400

Total

1200

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{5}  \times  1200 = 240

2nd Data Set

\displaystyle \text{Formula used for mean deviation:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = x_i - M \text{ where } M = \text{ Median }

\displaystyle \text{Arranging the data in ascending order } 300, 4000, 4200, 4400, 4600, 4800, 5800

\displaystyle \text{Here, Median } (M) = 4400 \text{ and } n = 7

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |

300 4100
4000 400
4200 200
4400 0
4600 200
4800 400
5800 1400

Total

6700

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{7}  \times  6700 = 957.14

\\

Question 4: The lengths (in cm) of 10 rods in a shop are given below:

40.0, 52.3, 55.2, 72.9, 52.8, 79.0, 32.5, 15.2, 27.9, 30.2

(i) Find the mean deviation from median

(ii) Find mean deviation from the mean also.

Answer:

\displaystyle \text{(i)   Formula used for mean deviation:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = x_i - M \text{ where } M = \text{ Median }

\displaystyle \text{Arranging the data in ascending order } 15.2, 27.9, 30.2, 32.5, 40, 52.3, 52.8, 55.2, 72.9, 79

\displaystyle \text{Here, Median } (M) = \frac{40+ 52.3}{2} = 46.15 \text{ and } n = 10

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |
40 6.15
52.3 6.15
55.2 9.05
72.9 26.75
52.8 6.65
79 32.85
32.5 13.65
15.2 30.95
29.9 18.25
30.2 15.95
Total 166.4

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  166.4 =16.64

\displaystyle \text{(ii)  Formula used for mean deviation about mean:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = |x_i - \overline{x} | \text{ where } \overline{x} = \text{ Mean of the given data }

\displaystyle \overline{x} = \frac{40.0+ 52.3+ 55.2+ 72.9+ 52.8+ 79.0+ 32.5+ 15.2+ 27.9+ 30.2}{10} = 45.98

\displaystyle x_i

\displaystyle |d_i| = | x_i - 3020 |

40 5.98
52.3 6.32
55.2 9.22
72.9 26.92
52.8 6.82
79 33.02
32.5 13.48
15.2 30.78
27.9 18.08
32 13.98

Total

164.6

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  164.6 =16.46

\\

Question 5: In question 1 (iii), (iv), (v) find the number of observations lying between \overline{X} - M.D. and \overline{X} + M.D. , where M.D. is the mean deviation from the mean.

Answer:

\displaystyle \text{(i)  Formula used for mean deviation about mean:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = |x_i - \overline{x} | \text{ where } \overline{x} = \text{ Mean of the given data }

\displaystyle \overline{x} = \frac{34+66+30+38+44+50+40+60+42+51}{10} = 45.5

\displaystyle x_i

\displaystyle |d_i| = | x_i - 45.5 |

34 11.5
66 20.5
30 15.5
38 7.5
44 1.5
50 4.5
40 5.5
60 14.5
42 3.5
51 5.5

Total

90

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  90 =9

\displaystyle \overline{x} - M.D. = 45.5 - 9 = 36.5

Also \displaystyle \overline{x} + M.D. = 45.5 + 9 = 54.5

Hence there are 6 observations between 36.5 and 54.5.

\\

\displaystyle \text{(ii)  Formula used for mean deviation about mean:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = |x_i - \overline{x} | \text{ where } \overline{x} = \text{ Mean of the given data }

\displaystyle \overline{x} = \frac{22+24+30+27+29+31+25+28+41+42}{10} =29.9

\displaystyle x_i

\displaystyle |d_i| = | x_i - 29.9 |

22 7.9
24 5.9
30 0.1
27 2.9
29 0.9
31 1.1
25 4.9
28 1.9
41 11.9
42 12.1

Total

48.8

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  48.8 =4.88

\displaystyle \overline{x} - M.D. = 29.9 - 4.88 = 25.02

Also \displaystyle \overline{x} + M.D. = 29.9 + 4.88 = 34.78 

Hence there are 5 observations between 25.02 and 34.78.

\\

\displaystyle \text{(iii)  Formula used for mean deviation about mean:  } MD = \frac{1}{n} \sum_{i=0}^{n} | d_i |

\displaystyle \text{Here, } d_i = |x_i - \overline{x} | \text{ where } \overline{x} = \text{ Mean of the given data }

\displaystyle \overline{x} = \frac{ 38+ 70+ 48 + 34 + 63 + 42 + 55 + 44 + 53 + 47 }{10} =49.4

\displaystyle x_i

\displaystyle |d_i| = | x_i - 49.4 |

38 11.4
70 20.6
48 1.4
34 15.4
63 13.6
42 7.4
55 5.6
44 5.4
53 3.6
47 2.4

Total

86.8

\displaystyle MD = \frac{1}{n} \sum_{i=0}^{n} | d_i | \hspace{1.0cm} \Rightarrow MD = \frac{1}{10}  \times  86.6 =8.68

\displaystyle \overline{x} - M.D. = 49.4 - 8.68 = 40.72

Also \displaystyle \overline{x} + M.D. =49.4 + 8.68 = 58.08 

Hence there are 6 observations between 40.72 and 58.08.