Question 1: Calculate the Mean and Standard Deviation for the following data:  

\displaystyle \begin{array}  {|l | c| c| c| c | c |} \hline  \text{Expenditure in Rs.: } & 0-10 & 10-20 & 20-30 & 30-40 & 40-50    \\ \hline  \text{Frequency: } &14 &13 & 27& 21& 15 \\ \hline \end{array}

Answer:

Calculation of Mean, Variance and Standard Deviation

\displaystyle \begin{array}  {  | l | c| c| c| c | c | c |}  \hline  \text{Class} & \text{Frequency} & \text{Mid-values} & u_i = \frac{x_i - 25}{10} & f_iu_i & {u_i}^2 & f_i{u_i}^2  \\  \text{interval} & (f_i) & (x_i) & & & & \\ \hline  0-10 & 14 & 5 & -2 & -28 & 4 & 56     \\ \hline  10-20 & 13 & 15 & -2 & -13 & 1 & 13    \\ \hline  20-30 & 27 & 25 & 0 & 0 & 0 &    0 \\ \hline  30-40 & 21  & 35 &1 & 21 & 1 & 21    \\ \hline  40-50 & 15 & 45 & 2 & 30 & 4 &  60    \\ \hline  & N = \sum f_i  &  &  & \sum f_iu_i  &  &   \sum f_i{u_i}^2   \\  & = 90 & & & = 10 & & = 150 \\ \hline  \end{array}

\displaystyle \text{Here, } N = 90, \hspace{0.5cm} \sum f_iu_i = 10, \hspace{0.5cm} \sum f_i{u_i}^2= 150 \hspace{0.5cm} A = 25, \hspace{0.5cm} h = 10

\displaystyle \text{Mean } = \overline{X} = A + h \Bigg( \frac{1}{N} \sum f_i u_i  \Bigg)  = 25 + 10 \Big( \frac{10}{90} \Big) = 26.11

\displaystyle \text{and, } Var(X) = h^2  \Bigg[  \Bigg(  \frac{1}{N} \sum f_i{u_i}^2 \Bigg) - \Bigg(  \frac{1}{N} \sum f_i{u_i} \Bigg)^2  \Bigg] \\ \\ \\ { \hspace{2.5cm} = 100 \Bigg[  \Bigg(  \frac{150}{90} \Bigg) - \Bigg(  \frac{10}{90} \Bigg)^2  \Bigg] = 165.4 }

\displaystyle \therefore  \text{ Standard Deviation } = \sqrt{ Var(X)} = \sqrt{165.4} = 12.86

\\

Question 2: Calculate the Standard Deviation  for the following data:

\displaystyle \begin{array}  {|l | c| c| c| c | c | c | c|} \hline  \text{Class:} & 0-30 & 30-60 & 60-90 & 90-120 & 120-150 & 150-180 & 180-210    \\ \hline  \text{Frequency:} & 9  & 17 & 43 & 82 & 81 & 44 & 24  \\ \hline \end{array}

Answer:

Calculation of Mean, Variance and Standard Deviation

\displaystyle \begin{array}  {  | l | c| c| c| c | c | c |}  \hline  \text{Class} & \text{Frequency} & \text{Mid-values} & u_i = \frac{x_i - 105}{30} & f_iu_i & {u_i}^2 & f_i{u_i}^2  \\  \text{interval} & (f_i) & (x_i) & & & & \\ \hline  0- 30 & 9 & 15 & -3 & -27 & 9 & 81     \\ \hline  30-60 & 17 & 45 & -2 & -34 & 4 &  68    \\ \hline  60-90 & 43 & 75 &  -1 & -43 &1  &  43    \\ \hline  90-120 & 82 & 105 & 0 & 0 & 0 &  0    \\ \hline  120 - 150 & 81 & 135 & 1 & 1 &1  & 81     \\ \hline  150-180 & 44 & 165 & 2 &  4 &4  &  176    \\ \hline  180-210& 24 & 195 & 3 & 9 & 9 &  216    \\ \hline  & N = \sum f_i  &  &  & \sum f_iu_i  &  &   \sum f_i{u_i}^2   \\  & = 300 & & & = 137 & & = 665 \\ \hline  \end{array}

\displaystyle \text{Here, } N = 300, \hspace{0.5cm} \sum f_iu_i = 137, \hspace{0.5cm} \sum f_i{u_i}^2= 665 \hspace{0.5cm} A = 105, \hspace{0.5cm} h = 30

\displaystyle \text{Mean } = \overline{X} = A + h \Bigg( \frac{1}{N} \sum f_i u_i  \Bigg)  = 105 + 30 \Big( \frac{137}{300} \Big) = 118.7

\displaystyle \text{and, } Var(X) = h^2  \Bigg[  \Bigg(  \frac{1}{N} \sum f_i{u_i}^2 \Bigg) - \Bigg(  \frac{1}{N} \sum f_i{u_i} \Bigg)^2  \Bigg] \\ \\ \\ { \hspace{2.5cm} = 900 \Bigg[  \Bigg(  \frac{665}{300} \Bigg) - \Bigg(  \frac{137}{300} \Bigg)^2  \Bigg] = 1807.31 }

\displaystyle \therefore  \text{ Standard Deviation } = \sqrt{ Var(X)} = \sqrt{1807.31} = 42.51

\\

Question 3: Calculate the A.M and Standard Deviation  for the following distribution:

\displaystyle \begin{array}  {|l | c| c| c| c | c | c | c | c | } \hline  \text{Class:} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 & 50-60 & 60-70 & 70-80     \\ \hline  \text{Frequency:}  & 18 & 16 & 15 &  12 & 10 & 5 & 2 & 1  \\ \hline \end{array}

Answer:

Calculation of Mean, Variance and Standard Deviation

\displaystyle \begin{array}  {  | l | c| c| c| c | c | c |}  \hline  \text{Class} & \text{Frequency} & \text{Mid-values} & u_i = \frac{x_i - 35}{10} & f_iu_i & {u_i}^2 & f_i{u_i}^2  \\  \text{interval} & (f_i) & (x_i) & & & & \\ \hline  0-10 & 18 & 5 & -3  & -54 & 9 & 162    \\ \hline  10-20 & 16 &  15 & -2 & -32 & 4 & 64    \\ \hline  20-30 & 15 & 25 & -1 & -15 & 1& 15    \\ \hline  30-40 & 12 &35  &0  & 0 & 0  & 0     \\ \hline  40-50 & 10 & 45  & 1 & 10 & 1 & 10    \\ \hline  50-60 & 5 &55  & 2 &10  & 4 &  20   \\ \hline  60-70 & 2 & 65 & 3 & 6 & 9 &  18   \\ \hline  70-80 & 1 & 75 & 4 &4  & 16 & 16    \\ \hline  & N = \sum f_i  &  &  & \sum f_iu_i  &  &   \sum f_i{u_i}^2   \\  & = 79 & & & = -71 & & = 305 \\ \hline  \end{array}

\displaystyle \text{Here, } N = 79, \hspace{0.5cm} \sum f_iu_i = -71, \hspace{0.5cm} \sum f_i{u_i}^2= 305 \hspace{0.5cm} A = 35, \hspace{0.5cm} h = 10

\displaystyle \text{Mean } = \overline{X} = A + h \Bigg( \frac{1}{N} \sum f_i u_i  \Bigg)  = 35 + 10 \Big( \frac{-71}{79} \Big) = 26.01

\displaystyle \text{and, } Var(X) = h^2  \Bigg[  \Bigg(  \frac{1}{N} \sum f_i{u_i}^2 \Bigg) - \Bigg(  \frac{1}{N} \sum f_i{u_i} \Bigg)^2  \Bigg] \\ \\ \\ { \hspace{2.5cm} = 100 \Bigg[  \Bigg(  \frac{305}{79} \Bigg) - \Bigg(  \frac{-71}{79} \Bigg)^2  \Bigg] = 305.30 }

\displaystyle \therefore  \text{ Standard Deviation } = \sqrt{ Var(X)} = \sqrt{305.30} = 17.47

\\

Question 4: A student obtained mean and standard deviation of 100 observations as 40 and 5.1  respectively. It was later found that one observation was wrongly copied as 50, the correct figure being 40. Find the correct mean and standard deviation.

Answer:

\displaystyle \text{Given: Mean } = \overline{X} =40, \hspace{1.0cm} n = 100, \hspace{1.0cm} \sigma = S.D. = 5.1

\displaystyle \text{Mean } \overline{X} = \frac{\sum  x_i}{n}

\displaystyle \Rightarrow \frac{1}{100} \sum x_i = 40 

\displaystyle \Rightarrow \sum x_i = 4000

Variance \displaystyle \sigma^2 = 26.01 

\displaystyle \frac{1}{n} \sum {x_i}^2 - (\overline{X})^2 = 26.01 

\displaystyle \frac{1}{100} \sum {x_i}^2 - 40^2 = 26.01 

\displaystyle \frac{1}{100} \sum {x_i}^2 = 1626.01 

\displaystyle \sum {x_i}^2 = 162601   \text{  ( This is incorrect because of incorrect values) }

If 50 is replaced by 40

\displaystyle \text{Corrected} \sum x_i = 4000-50+40 = 3990

\displaystyle \text{Corrected } \sum {x_i}^2 = 162601 - 50^2 + 40^2= 161701

\displaystyle \text{Therefore the correct mean } = \frac{\sum x_i}{n} = \frac{3990}{100} = 39.90

We know,

\displaystyle \text{Corrected Variance } = \frac{1}{n} \Big( \text{Corrected } \sum {x_i}^2 \Big) - ( \text{corrected mean })^2

\displaystyle = \frac{161701}{100} - \Big( \frac{3990}{100} \Big)^2 = 1617.01 - 1592.01 = 25

\displaystyle \text{Corrected } S.D. = \sqrt{\text{Variance}} = \sqrt{25} = 5

\\

Question 5:  Calculate the mean, median and standard deviation  for the following distribution:

\displaystyle \begin{array}  {|l | c| c| c| c | c | c | c | c | } \hline  \text{Class Interval:} & 31-35 & 36-40 & 41-45 & 46-50 & 51-55 & 56-60 & 61-65 & 66-70     \\ \hline  \text{Frequency:}  & 2 & 3 & 8 &  12 & 16 & 5 & 2 & 3  \\ \hline \end{array}

Answer: 

Calculation of Mean, Variance and Standard Deviation

\displaystyle \begin{array}  {  | l | c| c| c| c | c | c |}  \hline  \text{Class} & \text{Frequency} & \text{Mid-values} & u_i = \frac{x_i - 53}{4} & f_iu_i & {u_i}^2 & f_i{u_i}^2  \\  \text{interval} & (f_i) & (x_i) & & & & \\ \hline  31-35 & 2 & 33  & -5   & 25 & -10 &   50     \\ \hline  36-40 & 3 & 38  & -3.75  & 14.06 & -11.25 & 42.18        \\ \hline  41-45 & 8 & 43 & -2.5 & 6.25  & -20  &  50       \\ \hline  46-50 & 12 & 48 & -1.25 & 1.56 & -15 & 18.72      \\ \hline  51-55 & 16 & 53 & 0 & 0 & 0 &  0      \\ \hline  56-60 & 5 & 58 & 1.25 & 1.56  & 6.25  &  7.8      \\ \hline  61-65 & 2 & 63 & 2.5 & 6.25 &5  &  12.5      \\ \hline  66-70 & 3 & 68   & 3.75  & 14.06 & 11.25 &  42.18      \\ \hline  & N = \sum f_i  &  &  & \sum f_iu_i  &  &   \sum f_i{u_i}^2   \\  & = 51 & & & = -33.75 & & = 223.38 \\ \hline  \end{array}

\displaystyle \text{Here, } N = 51, \hspace{0.5cm} \sum f_iu_i = -33.75, \hspace{0.5cm} \sum f_i{u_i}^2= 223.38 \hspace{0.5cm} A = 53, \hspace{0.5cm} h = 4

\displaystyle \text{Mean } = \overline{X} = A + h \Bigg( \frac{1}{N} \sum f_i u_i  \Bigg)  = 53 + 4 \Big( \frac{-33.75}{51} \Big) = 50.36

\displaystyle \text{and, } Var(X) = h^2  \Bigg[  \Bigg(  \frac{1}{N} \sum f_i{u_i}^2 \Bigg) - \Bigg(  \frac{1}{N} \sum f_i{u_i} \Bigg)^2  \Bigg] \\ \\ \\ { \hspace{2.5cm} = 16 \Bigg[  \Bigg(  \frac{223.38}{51} \Bigg) - \Bigg(  \frac{-33.75}{51} \Bigg)^2  \Bigg] = 63.07 }

\displaystyle \therefore  \text{ Standard Deviation } = \sqrt{ Var(X)} = \sqrt{63.07} = 7.94

\displaystyle \text{Clearly,  } N = 51 \Rightarrow \frac{N}{2} = \frac{51}{2} = 25.5

\displaystyle \text{The cumulative frequency just greater than } \frac{N}{2} = 25.5 \text{ is } 41

\displaystyle \text{The corresponding value of class } \text{ is } 51-55

\displaystyle \text{Therefore the median class } \text{ is } 51-55

\displaystyle \therefore l = 51, \hspace{0.5cm} f = 16,  \hspace{0.5cm} F = 25, \hspace{0.5cm} N = 51, \hspace{0.5cm} h = 4

\displaystyle \therefore \text{ Median } = l + \frac{\Big( \frac{N}{2} - F \Big) }{f} \times h 

\displaystyle = 51 + \frac{\Big( \frac{51}{2} - 25 \Big) }{16} \times 4 

\displaystyle = 51 + \frac{\Big( 25.5 - 25 \Big) }{16} \times 4 

\displaystyle = 51.125 

\\

Question 6: Calculate the mean and variance of frequency distribution given below:

\displaystyle \begin{array}  {  | l | c| c| c| c |  } \hline  x_i: & 1 \leq x < 3 & 3 \leq x < 5 & 5 \leq x < 7 & 7 \leq x < 10    \\ \hline  f_i:  & 6 &  4 & 5  & 1  \\ \hline \end{array}

Answer:

Calculation of Mean, Variance and Standard Deviation

\displaystyle \begin{array}  {  | l | c| c| c| c | c | c |}  \hline  \text{Class} & \text{Frequency} & \text{Mid-values} & u_i = \frac{x_i - 6}{2} & f_iu_i & {u_i}^2 & f_i{u_i}^2  \\  \text{interval} & (f_i) & (x_i) & & & & \\ \hline  1-3 &  6 & 2 & -2 & -12 & 4 &  24 \\ \hline  3-5 &  4 & 4 & -1 & -4 & 1 & 4  \\ \hline  5-7 &  5 & 6& 0 & 0 & 0 &  0 \\ \hline  7-10 &  1 & 8.5 & 1.25 & 1.25  & 1.5625 &1.5625   \\ \hline  & N = \sum f_i  &  &  & \sum f_iu_i  &  &   \sum f_i{u_i}^2   \\  & = 16 & & & = -14.75 & & = 29.5625 \\ \hline  \end{array}

\displaystyle \text{Here, } N = 16, \hspace{0.5cm} \sum f_iu_i = -14.75, \hspace{0.5cm} \sum f_i{u_i}^2= 29.5625 \hspace{0.5cm} A = 6, \hspace{0.5cm} h = 2

\displaystyle \text{Mean } = \overline{X} = A + h \Bigg( \frac{1}{N} \sum f_i u_i  \Bigg)  = 6 + 2 \Big( \frac{-14.75}{16} \Big) = 4.15625

\displaystyle \text{and, } Var(X) = h^2  \Bigg[  \Bigg(  \frac{1}{N} \sum f_i{u_i}^2 \Bigg) - \Bigg(  \frac{1}{N} \sum f_i{u_i} \Bigg)^2  \Bigg] \\ \\ \\ { \hspace{2.5cm} = 4 \Bigg[  \Bigg(  \frac{29.5625}{16} \Bigg) - \Bigg(  \frac{-14.75}{16} \Bigg)^2  \Bigg] =3.9912 }

\displaystyle \therefore  \text{ Standard Deviation } = \sqrt{ Var(X)} = \sqrt{3.9912} = 1.9978

\\

Question 7: The weight of coffee in 70 jars is shown in the following table:

\displaystyle \begin{array}  {  | l | c| c| c| c | c | c |}  \hline  \text{Weight in grams:} & 200-201 & 201-202 & 202-203 & 203-204 & 204-205 & 205-206  \\ \hline  \text{Frequency:}  & 13 & 27  & 18  & 10 & 1 & 1    \\ \hline \end{array}

Determine the variance and standard deviation of the above distribution.

Answer:

Calculation of Mean, Variance and Standard Deviation

\displaystyle \begin{array}  {  | l | c| c| c| c | c | c |}  \hline  \text{Class} & \text{Frequency} & \text{Mid-values} & u_i = \frac{x_i - 203.5 }{1} & f_iu_i & {u_i}^2 & f_i{u_i}^2  \\  \text{interval} & (f_i) & (x_i) & & & & \\ \hline  200-201 & 13 & 200.5 & -3 & -39 & 9 & 117 \\ \hline  201-202 &27  & 201.5 & -2 & -54 & 9 &  108 \\ \hline  202-203 &18  & 202.5 & -1 & -18 & 1 & 18  \\ \hline  203-204 &10 & 203.5 & 0 & 0 &0  &  0 \\ \hline  204-205 & 1 & 204.5 & 1 & 1 & 1 & 1  \\ \hline  205-206 & 1 & 205.5 & 2 & 2 & 4 & 4  \\ \hline  & N = \sum f_i  &  &  & \sum f_iu_i  &  &   \sum f_i{u_i}^2   \\  & = 70 & & & = -108 & & = 248 \\ \hline  \end{array}

\displaystyle \text{Here, } N = 70, \hspace{0.5cm} \sum f_iu_i = -108, \hspace{0.5cm} \sum f_i{u_i}^2= 248 \hspace{0.5cm} A = 203.5, \hspace{0.5cm} h = 1

\displaystyle \text{Mean } = \overline{X} = A + h \Bigg( \frac{1}{N} \sum f_i u_i  \Bigg)  = 203.5 + 1 \Big( \frac{-108}{70} \Big) =201.95

\displaystyle \text{and, } Var(X) = h^2  \Bigg[  \Bigg(  \frac{1}{N} \sum f_i{u_i}^2 \Bigg) - \Bigg(  \frac{1}{N} \sum f_i{u_i} \Bigg)^2  \Bigg] \\ \\ \\ { \hspace{2.5cm} = 1 \Bigg[  \Bigg(  \frac{248}{70} \Bigg) - \Bigg(  \frac{-108}{70} \Bigg)^2  \Bigg] =1.162 }

\displaystyle \therefore  \text{ Standard Deviation } = \sqrt{ Var(X)} = \sqrt{1.162} = 1.078

\\

Question 8: The mean and standard deviation of 100 observations were found to be 40 and 10 respectively. If at the time of calculations two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.

Answer:

\displaystyle \text{Given: Mean } = \overline{X} =40, \hspace{1.0cm} n = 100, \hspace{1.0cm} \sigma = S.D. = 10

\displaystyle \text{Mean } \overline{X} = \frac{\sum  x_i}{n}

\displaystyle \Rightarrow \frac{1}{100} \sum x_i = 40 

\displaystyle \Rightarrow \sum x_i = 4000

Variance \displaystyle \sigma^2 = 100 

\displaystyle \frac{1}{n} \sum {x_i}^2 - (\overline{X})^2 = 100 

\displaystyle \frac{1}{100} \sum {x_i}^2 - 40^2 = 100 

\displaystyle \frac{1}{100} \sum {x_i}^2 = 1700 

\displaystyle \sum {x_i}^2 = 170000   \text{  ( This is incorrect because of incorrect values) }

If 30 and 70 are replaced by 3 and 27

\displaystyle \text{Corrected} \sum x_i = 4000-30-70+3+27 = 3930

\displaystyle \text{Corrected } \sum {x_i}^2 = 17000 - 900- 4900 + 9 + 729= 164938

\displaystyle \text{Therefore the correct mean } = \frac{\sum x_i}{n} = \frac{3930}{100} = 39.30

We know,

\displaystyle \text{Corrected Variance } = \frac{1}{n} \Big( \text{Corrected } \sum {x_i}^2 \Big) - ( \text{corrected mean })^2

\displaystyle = \frac{164938}{100} - \Big( \frac{3930}{100} \Big)^2 = 1649.38 - 1544.49 = 104.89

\displaystyle \text{Corrected } S.D. = \sqrt{\text{Variance}} = \sqrt{104.89} = 10.24

\\

Question 9: While calculating the mean and variance of 10 readings, a student wrongly used the reading of 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and variance.

Answer:

\displaystyle \text{Given: Mean } = \overline{X} =45, \hspace{1.0cm} n = 10, \hspace{1.0cm}  \text{Variance} = 16

\displaystyle \text{Mean } \overline{X} = \frac{\sum  x_i}{n}

\displaystyle \Rightarrow \frac{1}{10} \sum x_i = 45 

\displaystyle \Rightarrow \sum x_i = 450

Variance \displaystyle = 16 

\displaystyle \frac{1}{n} \sum {x_i}^2 - (\overline{X})^2 = 16 

\displaystyle \frac{1}{10} \sum {x_i}^2 - 45^2 = 16 

\displaystyle \frac{1}{10} \sum {x_i}^2 = 2041 

\displaystyle \sum {x_i}^2 = 20410   \text{  ( This is incorrect because of incorrect values) }

If 52 is replaced by 25

\displaystyle \text{Corrected} \sum x_i = 450-52+25 = 423

\displaystyle \text{Corrected } \sum {x_i}^2 = 20410-2704+625= 18331

\displaystyle \text{Therefore the correct mean } = \frac{\sum x_i}{n} = \frac{423}{10} = 42.3

We know,

\displaystyle \text{Corrected Variance } = \frac{1}{n} \Big( \text{Corrected } \sum {x_i}^2 \Big) - ( \text{corrected mean })^2

\displaystyle = \frac{18331}{10} - \Big( \frac{423}{10} \Big)^2 = 1833.10 - 1789.29 = 43.81

\displaystyle \text{Corrected } S.D. = \sqrt{\text{Variance}} = \sqrt{43.81} = 6.6189 = 6.62

\\

Question 10: Calculate the mean, variance and standard deviation of the following frequency distribution:

\displaystyle \begin{array}  {  | l | c| c| c| c | c | c |}  \hline  \text{Class:} & 1-10 & 10-20 & 20-3- & 30-40 & 40-50 & 50-60  \\ \hline  \text{Frequency:}  & 11 & 29  & 18  & 4 & 5 & 3    \\ \hline \end{array}

Answer:

Calculation of Mean, Variance and Standard Deviation

\displaystyle \begin{array}  {  | l | c| c| c| c | c | c |}  \hline  \text{Class} & \text{Frequency} & \text{Mid-values} & u_i = \frac{x_i - 35}{10} & f_iu_i & {u_i}^2 & f_i{u_i}^2  \\  \text{interval} & (f_i) & (x_i) & & & & \\ \hline  0-10 & 11 & 5 & -3  & -33 & 9 & 99    \\ \hline  10-20 & 29 &  15 & -2 & -58 & 4 & 116    \\ \hline  20-30 & 18 & 25 & -1 & -18 & 1& 18    \\ \hline  30-40 & 4 &35  &0  & 0 & 0  & 0     \\ \hline  40-50 & 5 & 45  & 1 & 5 & 1 & 5    \\ \hline  50-60 & 3 & 55  & 2 & 6  & 4 &  12   \\ \hline  & N = \sum f_i  &  &  & \sum f_iu_i  &  &   \sum f_i{u_i}^2   \\  & = 70 & & & = -98 & & = 250 \\ \hline  \end{array}

\displaystyle \text{Here, } N = 70, \hspace{0.5cm} \sum f_iu_i = -98, \hspace{0.5cm} \sum f_i{u_i}^2= 250 \hspace{0.5cm} A = 35, \hspace{0.5cm} h = 10

\displaystyle \text{Mean } = \overline{X} = A + h \Bigg( \frac{1}{N} \sum f_i u_i  \Bigg)  = 35 + 10 \Big( \frac{-98}{70} \Big) = 21 

\displaystyle \text{and, } Var(X) = h^2  \Bigg[  \Bigg(  \frac{1}{N} \sum f_i{u_i}^2 \Bigg) - \Bigg(  \frac{1}{N} \sum f_i{u_i} \Bigg)^2  \Bigg] \\ \\ \\ { \hspace{2.5cm} = 100 \Bigg[  \Bigg(  \frac{250}{70} \Bigg) - \Bigg(  \frac{-98}{70} \Bigg)^2  \Bigg] = 161.14 }

\displaystyle \therefore  \text{ Standard Deviation } = \sqrt{ Var(X)} = \sqrt{161.14} = 12.694