Question 1: If  x \in \{-3,-2,-1,0,1,2,3 \} , find the solution set of each of the following:

i)  x+2<1      ii)  2x-1 < 4      iii)  2/3 x<1      iv)  1-x>0

v)  3-5x<-1      vi)  2-3x>1      vii)  -6 \geq 2x-4      viii)  3x-5 \geq -12

ix)  14-2x<6

Answer:

i) x+2<1

\Rightarrow x \leq -1

\displaystyle \text{Solution Set } = \{-3,-2\}

ii) 2x-1 < 4

\Rightarrow 2x < 5

\displaystyle \Rightarrow  x < \frac{5}{2}

\displaystyle \text{Solution Set } = \{-3,-2,-1,0,1,2 \}

iii)  2/3 x<1

\Rightarrow x<3/2

\displaystyle \text{Solution Set } = \{-3,-2,-1,0,1 \}

iv) 1-x>0

\Rightarrow x<1

\displaystyle \text{Solution Set } = \{-3,-2,-1,0 \}

v) 3-5x<-1

\Rightarrow 5x>4

\Rightarrow x>4/5

\displaystyle \text{Solution Set } = \{ 1,2,3 \}

vi) 2-3x>1

\Rightarrow 3x<1

\Rightarrow x<1/3

\displaystyle \text{Solution Set } = \{-3,-2,-1,0 \} 

vii) -6 \geq 2x-4

\Rightarrow 2x \leq 2

\Rightarrow x \leq 1

\displaystyle \text{Solution Set } = \{-3,-2,-1,0,1 \}

viii) 3x-5 \geq -12

\Rightarrow 3x \geq -7

\Rightarrow x \geq (-7)/3

\displaystyle \text{Solution Set } = \{-2,-1, 0, 1, 2, 3 \}

ix) 14-2x<6

\Rightarrow 2x>8

\Rightarrow x>4

\displaystyle \text{Solution Set } = \phi

\\

Question 2: If x \in N ; find the solution set of each of the following in equation: N=\{1, 2, 3, ... \}

i)  3x-8<0      ii)  7x+3 \leq 17      iii)  5-x>1 

iv)  1-3x>-4       v)  \displaystyle \frac{3}{2}-\frac{x}{2}>-1      vi)  \displaystyle \frac{-1}{4} \leq \frac{1}{2} - \frac{2}{3}

Answer:

i) 3x-8<0 

\Rightarrow 3x<8 

\displaystyle \Rightarrow x<\frac{8}{3}

\displaystyle \text{Solution Set } = \{1,2  \}

ii) 7x+3 \leq 17 

\Rightarrow 7x \leq 14 

\Rightarrow x \leq 2 

\displaystyle \text{Solution Set } = \{1,2 \}

iii) 5-x>1 

\Rightarrow x<4 

\displaystyle \text{Solution Set } = \{1,2,3 \}

iv) 1-3x>-4 

\Rightarrow 3x<5 

\displaystyle \Rightarrow x<\frac{5}{3}

\displaystyle \text{Solution Set } = \{1 \}

v) \frac{3}{2}-\frac{x}{2}>-1 

\displaystyle \Rightarrow \frac{x}{2}<\frac{5}{2}  

\Rightarrow  x<5 

\displaystyle \text{Solution Set } = \{1,2,3,4 \}

vi) \displaystyle \frac{-1}{4} \leq \frac{1}{2} - \frac{2}{3}

\displaystyle \Rightarrow \frac{-3}{4} \leq \frac{-x}{3}  

\displaystyle \Rightarrow \frac{x}{3}  \leq \frac{3}{4}  

\displaystyle \Rightarrow  x \leq \frac{9}{4}

\displaystyle \text{Solution Set } = \{1,2 \}

\\

Question 3: If x \in Z , find the solution set of the following in equations:  Z = \{...-3, -2, -1, 0, 1, 2, 3, ...\}

i)  9x-7 \leq 25+3x       ii)  -17<9x-8      iii)  -4(x+5)>10

iv)  4-3x<13+x      v)  5-4x<10-x      i)   10-2(1+4x)<20

Answer:

i) 9x-7 \leq 25+3x 

\Rightarrow  6x \leq 32

\displaystyle \Rightarrow  x \leq \frac{32}{6}

\displaystyle \text{Solution Set } = \{...-3, -2, -1, 0, 1, 2, 3, 4, 5...\}

31

ii) -17<9x-8

 \Rightarrow  9x>-9

 \Rightarrow  x>-1

\displaystyle \text{Solution Set } = \{0, 1, 2, 3...\}

32

iii) -4(x+5)>10

 \Rightarrow  -4x>30

\displaystyle \Rightarrow  x<\frac{(-15)}{2}

\displaystyle \text{Solution Set } = \{...-10, -9, -8 \}

33

iv) 4-3x<13+x

\Rightarrow  4x>-9

\displaystyle \Rightarrow x>\frac{(-9)}{4}

\displaystyle \text{Solution Set } = \{-2, -1, 0, 1, 2, 3, ...\}

34

v) 5-4x<10-x

 \Rightarrow  -5<3x

\displaystyle \Rightarrow  x >\frac{(-5)}{3}

\displaystyle \text{Solution Set } = \{-1, 0, 1, 2, ...\}

35

vi)  10-2(1+4x)<20

  \Rightarrow  10-2-20<8x

  \Rightarrow  8x>-12

  \Rightarrow  x>-3/2

\displaystyle \text{Solution Set } = \{-1, 0, 1, 2, ...\}

36

\\

Question 4: Find the Solution Set of each of the following in equations and represent the solution on a real line.

i)  1-4x\geq{}-1, x \in N      ii)  -3\leq{}4x+1<9, x \in N

iii)    0<2x-5<5, x \in W \ \ \ \ \ W= \{0,1,2,3\ldots{}.\}      iv)  \displaystyle -3<   \frac{x}{2}   - 1<1, x \in Z

v)    \displaystyle -4<   \frac{2x}{5}   +1<-3, x\in Z      vi)    \displaystyle 3+   \frac{x}{4}     <   \frac{2x}{3}   +5, x\in R

vii)    \displaystyle \frac{(3x+1)}{4}   \leq   \frac{(5x-2)}{3}   , x\in R      viii)  \displaystyle \frac{1}{3}   (4x-1)+3\leq 4+  \frac{2}{5}   (6x+2)+  \frac{4}{5} 

Answer:

i)  1-4x\geq{}-1, x \in N

  \Rightarrow{} 4x\leq{}2

\displaystyle \Rightarrow{} x\leq{}   \frac{1}{2} 

\displaystyle \text{Solution Set } = \varnothing{}

ii)  -3\leq{}4x+1<9, x \in N

  \Rightarrow{} -4\leq{}4x<8

  \Rightarrow{} -1\leq{}x<2

\displaystyle \text{Solution Set } = \{-1,0,1\}

42

iii)    0<2x-5<5, x \in W \ \ \ \ \ W= \{0,1,2,3\ldots{}.\}

  \Rightarrow{} 5<2x<10

\displaystyle \Rightarrow{}   \frac{5}{2}   <x<5

\displaystyle \text{Solution Set } = \{3,4\}

43

iv)  \displaystyle -3<   \frac{x}{2}   - 1<1, x \in Z

\displaystyle \Rightarrow{} -2<   \frac{x}{2}   <2

  \Rightarrow{} -4<x<4

\displaystyle \text{Solution Set } = \{-3,-2,-1,0,1,2,3\}

44

v)    \displaystyle -4<   \frac{2x}{5}   +1<-3, x\in Z

\displaystyle \Rightarrow{} -5<   \frac{2x}{5}   <-4

  \Rightarrow{} 25<2x<-20

\displaystyle  \Rightarrow{} \frac{-25}{2}   <x<-10

\displaystyle \text{Solution Set } = \{-12,-11\}

45

vi)   \displaystyle 3+   \frac{x}{4}   <   \frac{2x}{3}   +5, x\in R

\displaystyle  \Rightarrow{}   \frac{x}{4}   <   \frac{2x}{3}   +2

\displaystyle \Rightarrow{}   \frac{2x}{3}   -   \frac{x}{4}   >-2

  \Rightarrow{} 5x>-24

\displaystyle \Rightarrow{} x>   \frac{(-24)}{5} 

\displaystyle \text{Solution Set } = \{x\in R :x>   \frac{(-24)}{5}   \}

46

vii)   \displaystyle \frac{(3x+1)}{4}   \leq{}   \frac{(5x-2)}{3}   , x\in R

  \Rightarrow{} 9x+3\leq{}20x-8

  \Rightarrow{} 11x\geq{}11

  \Rightarrow{} x\geq{}1

\text{Solution Set } = \{x \in R: x\geq{}1\}

47

viii)   \displaystyle \frac{1}{3}   (4x-1)+3\leq{}4+   \frac{2}{5}   (6x+2)+   \frac{4}{5} 

\displaystyle \Rightarrow{}   \frac{4}{3}   x-   \frac{1}{3}   +3\leq{}4+   \frac{12}{5}   x+   \frac{4}{5} 

\displaystyle  \Rightarrow{}   \frac{(-32)}{15}   \leq{}  \frac{16}{15}  x

  \Rightarrow{} x\geq{}-2

\text{Solution Set } = \{x \in R: x\geq{}-2\}

48