Question 1: Find the area of a triangle with base \displaystyle 16 \text{ cm } and height \displaystyle 7 \text{ cm } .

Answer:

\displaystyle \text{ Area of a triangle } = \frac{1}{2} \times Base \times Height = \frac{1}{2} \times 16 \times 7 = 56 \text{ cm} ^2

\displaystyle \\

Question 2: The area of a triangle is \displaystyle 48 \text{ cm} ^2 . Its base is \displaystyle 12 \text{ cm } . What is its altitude?

Answer:

Let the height of the triangle \displaystyle = h

\displaystyle \text{ Area of triangle } = 48 \text{ cm} ^2

\displaystyle \therefore 48 = \frac{1}{2} \times 12 \times h

\displaystyle \Rightarrow h = \frac{48}{6} = 8 \text{ cm }

\displaystyle \\

Question 3: Find the area of an equilateral triangle whose perimeter is \displaystyle 12 \text{ m } .

Answer:

\displaystyle \text{ Perimeter } = 12 \text{ m }

\displaystyle \text{ Therefore side } = \frac{12}{3} =4 \text{ m } (since triangle is equilateral triangle)

\displaystyle \text{ Therefore } h = \sqrt{4^2 - 2^2}= \sqrt{16-4} = 2\sqrt{3}

\displaystyle \text{ Therefore } \text{ Area of triangle } = \frac{1}{2} \times 4 \times 2\sqrt{3} = 4\sqrt{3} \ m^2

\displaystyle \\

Question 4: Find the area of a right-angled triangle if the radius of its circumcircle is \displaystyle 3 \text{ cm } and altitude drawn to the hypotenuse is \displaystyle 2 \text{ cm } .

Answer:

Radius \displaystyle = 3 \text{ cm }

Therefore Diameter \displaystyle = Base \displaystyle = 6 \text{ cm } (remember, the angle subtended by the diameter on any point on the circumference is a right angle)

\displaystyle \text{ Therefore } \text{ Area of triangle } = \frac{1}{2} \times 6 \times 2 = 6 \text{ cm} ^2

\displaystyle \\

Question 5: Find the area of a right-angled triangle if the diameter of its circumcircle is \displaystyle 10 \text{ cm } and altitude drawn to the hypotenuse is \displaystyle 4.5 \text{ cm } long.

Answer:

Diameter \displaystyle = Base \displaystyle = 10 \text{ cm }

\displaystyle \text{ Therefore } \text{ Area of triangle } = \frac{1}{2} \times 10 \times 4.5 = 22.5 \text{ cm} ^2

\displaystyle \\

Question 6: The perimeter of a right triangle is \displaystyle 60 \text{ cm } . Its hypotenuse is \displaystyle 26 \text{ cm } . Find the other two sides and the area of the triangle.

Answer:

\displaystyle \text{ Perimeter of triangle } = 60 \text{ cm }

Given hypotenuse \displaystyle = 26 . Let one side be \displaystyle x , then the other side would be \displaystyle (34-x)

Applying Pythagoras theorem we get

\displaystyle 26^2 = (34-x)^2 + x^2

\displaystyle \Rightarrow 676 = 1156 + x^2 - 68x + x^2

\displaystyle \Rightarrow 2x^2 - 68x + 480 = 0

\displaystyle \Rightarrow x^2 - 34x + 240 = 0

\displaystyle \Rightarrow (x-24)(x-10) = 0

\displaystyle \Rightarrow x = 24 or 10

When \displaystyle x = 24 , the other side is \displaystyle (34-24) = 10 . Similarly, when \displaystyle x = 10 \text{ cm } the other side \displaystyle = (34-10) = 24 \text{ cm }

Therefore the sides are \displaystyle 10 \ cm, 24 \text{ cm } , and \displaystyle 26 \text{ cm } .

Therefore the area of the triangle \displaystyle = \frac{1}{2} \times 10 \times 24 = 120 \text{ cm} ^2

\displaystyle \\

Question 7: The cost of turfing a triangular field at the rate of \displaystyle Rs. \ 45 per \displaystyle 100 \ m^2 is \displaystyle Rs. \ 900 . Find the height, if double the base of the triangle is \displaystyle 5 times the height.

Answer:

Let the base Base \displaystyle =x

\displaystyle \Rightarrow Height = \frac{2}{5} x

The rate of turfing \displaystyle = Rs. \ 45 per \displaystyle 100 \ m^2

Total Cost of turfing \displaystyle = 900 \ Rs.

\displaystyle \text{ Therefore } \frac{1}{2} \times x \times \frac{2}{5} x \times \frac{45}{100} = 900

\displaystyle \Rightarrow x^2 = 100

\displaystyle \Rightarrow x = 100

Therefore Height \displaystyle = \frac{2}{5} \times 100 = 40 \text{ m }

\displaystyle \\

Question 8: The base of a triangular field is three times its height. If the cost of cultivating the field at \displaystyle Rs. \ 36 per hectare is \displaystyle Rs \ 486 , find its base and height.

Answer:

Let the Height \displaystyle = h

Therefore the Base \displaystyle = 3h

\displaystyle \text{ Therefore } \text{ Area of triangle } = \frac{1}{2} \times 3h \times h = \frac{3}{2} h^2

1 hectare \displaystyle = 10000 \ m^2

Therefore cost of cultivation \displaystyle = \frac{36}{10000} Rs./m^2

\displaystyle \text{ Therefore } \frac{3}{2} h^2 \times \frac{36}{10000} = 486

\displaystyle \Rightarrow h^2 = 90000

\displaystyle \Rightarrow h = 300 \text{ m }

Hence the Base \displaystyle = 3 \times 300 = 900 \text{ m }

\displaystyle \\

Question 9: An isosceles right triangle has \displaystyle \text{ Area } 200 \text{ cm} ^2 . what is the length of its hypotenuse?

Answer:

Let the Base and Height of the isosceles right triangle \displaystyle = x

\displaystyle \text{ Therefore } \frac{1}{2} \times x \times = 200

\displaystyle \Rightarrow x^2 = 400

\displaystyle \Rightarrow x = 20

\displaystyle \text{Therefore Hypotenuse } = \sqrt{20^2 + 20^2} = 20\sqrt{2} \text{ cm } or \displaystyle 28.28 \text{ cm }

\displaystyle \\

Question 10: Find the base of an isosceles triangle whose area is \displaystyle 6 \text{ cm} ^2 and the length of one of its equal sides is \displaystyle 13 \text{ cm } .

Answer:

\displaystyle \text{ Area } = 6 \text{ cm} ^2

\displaystyle \text{ Therefore } h = \sqrt{13^2 - a^2}

Hence \displaystyle \frac{1}{2} \times (2a) \times \sqrt{13^2 - a^2} = 60

\displaystyle \Rightarrow a \sqrt{13^2 - a^2} = 60

\displaystyle \Rightarrow a^2(13^2 - a^2) = 3600

\displaystyle \Rightarrow (a^2 - 144)(a^2 - 25) = 0

\displaystyle \Rightarrow a^2 = 144 or \displaystyle a = 12

and \displaystyle a^2 = 25 or \displaystyle a = 5

Hence \displaystyle a is either \displaystyle 12 or \displaystyle 5

Therefore Base is either \displaystyle 24 \text{ cm } or \displaystyle 10 \text{ cm }

\displaystyle \\

Question 11: The perimeter of an isosceles triangle is \displaystyle 40 \text{ cm } . The base is two-third of the sum of equal sides. Find the length of each side.

Answer:

\displaystyle \text{ Perimeter } = 40 \text{ cm }

Let the two equal sides be \displaystyle x

Given: \displaystyle b = \frac{2}{3} (2x) = \frac{4}{3} x

\displaystyle \text{ Therefore } x + \frac{4}{3} x + x = 40

\displaystyle \Rightarrow \frac{10x}{3} = 4

\displaystyle \Rightarrow x = 12

\displaystyle \text{Therefore sides are } 12 \ cm, 12 \text{ cm } , and \displaystyle 16 \text{ cm }

\displaystyle \\

Question 12: Find the area of an isosceles triangle whose equal sides are \displaystyle 12 \text{ cm } each and the perimeter is \displaystyle 30 \text{ cm } .

Answer:

\displaystyle b = 30 - 12 - 12 = 6 \text{ cm }

\displaystyle \text{ Therefore } h = \sqrt{12^2 - 3^2} = \sqrt{135}

Therefore \displaystyle \text{ Area } = \frac{1}{2} \times 6 \times \sqrt{135} = 3\sqrt{135} \ \text{cm}^2 = 34.86 \text{ cm} ^2

\displaystyle \\

Question 13: Find the area of an isosceles triangle whose base is \displaystyle 6 \text{ cm } and perimeter is \displaystyle 16 \text{ cm } .

Answer:

\displaystyle \text{ Perimeter } = 16 \text{ cm }

\displaystyle \text{ Therefore } 2x + 6 = 16 \Rightarrow x = 5 \text{ cm }

\displaystyle \text{ Therefore } h = \sqrt{5^2 - 3^2} = \sqrt{25-9} = 4 \text{ cm }

Therefore \displaystyle \text{ Area } = \frac{1}{2} \times 6 \times 4 = 12 \text{ cm} ^2

\displaystyle \\

Question 14: The sides of a right triangle containing the right angle \displaystyle 5x \text{ cm } and \displaystyle (3x-1) \text{ cm } . Calculate the length of the hypotenuse of the triangle, if its area is \displaystyle 60 \text{ cm} ^2 .

Answer:

\displaystyle \text{ Area } = 60 \text{ cm} ^2

\displaystyle \text{ Therefore } \frac{1}{2} \times (3x-1) \times 5x = 60

\displaystyle \Rightarrow (3x-1)x = 24

\displaystyle \Rightarrow 3x^2 - x - 24 = 0

\displaystyle \Rightarrow x = 3 \ or \ - 2.67 (this is not possible as \displaystyle x is positive)

\displaystyle \text{Therefore sides are } 15, 8

\displaystyle \text{Hence Hypotenuse } = \sqrt{15^2 + 8^2} = \sqrt{289} = 17 \text{ cm }

\displaystyle \\

Question 15: \displaystyle ABC is a right triangle right angled at \displaystyle B . lf \displaystyle AB = (2x +1) \text{ cm } , \displaystyle BC = (x + 1) \text{ cm } and area of \displaystyle \triangle ABC is 60 \text{ cm} ^2 $, find its perimeter.

Answer:

\displaystyle \text{ Area } = 60 \text{ cm} ^2

\displaystyle \text{ Therefore } \frac{1}{2} \times (x+1) \times (2x+1) = 60

\displaystyle \Rightarrow (x+1)(2x+1)= 120

\displaystyle \Rightarrow 2x^2 + 3x - 119 = 0

\displaystyle \Rightarrow x = 7 \ or \ -8.5 (this is not possible as \displaystyle x is positive)

\displaystyle \text{Therefore sides are } 15 \text{ cm } and \displaystyle 8 \text{ cm }

\displaystyle \text{Hence Hypotenuse } = \sqrt{15^2 + 8^2} = \sqrt{289} = 17 \text{ cm }

and \displaystyle \text{ Perimeter } = 15 + 8 + 17 = 40 \text{ cm }

\displaystyle \\

Question 16: In the adjoining figure, \displaystyle ABC is an equilateral triangle with each side of length \displaystyle 10 \text{ cm } . \displaystyle D is a point inside \displaystyle \triangle ABC such that \displaystyle \angle BDC=90^o and \displaystyle CD =6 \text{ cm } . Find the area of the shaded region.

Answer:

Height of equilateral triangle \displaystyle h_1 = \sqrt{10^2 - 5^2} = \sqrt{75} = 5\sqrt{3} \text{ cm }

Therefore are of equilateral triangle \displaystyle = \frac{1}{2} \times 10 \times 5\sqrt{3} = 25\sqrt{3} \text{ cm } ^2

Height of right angle triangle \displaystyle h_2 = \sqrt{10^2 - 6^2} = \sqrt{64} = 8 \text{ cm }

Therefore are of right triangle \displaystyle = \frac{1}{2} \times 6 \times 8 = 24 \text{ cm} ^2

Therefore shaded \displaystyle \text{ Area } = 25 \sqrt{3} - 24 = 19.3 \text{ cm} ^2

\displaystyle \\

Question 17: If the difference between the two sides of a right-angled triangle is \displaystyle 2 \text{ cm } and the area of the triangle is \displaystyle 24 \text{ cm} ^2 , find the perimeter of the triangle.

Answer:

\displaystyle \text{ Area } = 24 \text{ cm} ^2

\displaystyle \text{ Therefore } \frac{1}{2} \times x \times (x+2) = 24

\displaystyle \Rightarrow x(x+2) = 48

\displaystyle \Rightarrow x^2 + 2x - 48 = 0

\displaystyle \Rightarrow x = 6 or \displaystyle -8 (this is not possible as \displaystyle x is positive)

\displaystyle \text{Therefore sides are } 6 \text{ cm } and \displaystyle 8 \text{ cm }

\displaystyle \text{Therefore Hypotenuse } = \sqrt{8^2 + 6^2} = \sqrt{100} = 10 \text{ cm }

Hence \displaystyle \text{ Perimeter } = 6 + 8 + 10 = 24 \text{ cm }

\displaystyle \\