Note: The general equation of circle is where the center is
and radius
Question 1: Find the coordinates of the center and radius of each of the following circles :
i) ii)
iii) iv)
Answer:
i) Give equation :
Comparing it with , we get,
Therefore center
Radius
ii) Give equation :
Comparing it with , we get,
Therefore center
Radius
iii) Given equation
Comparing it with , we get,
Therefore center
Radius
iv) Given equation
Comparing it with , we get,
Therefore center
Radius
Question 2: Find the equation of the circle passing through the points:
(i) and
(ii)
,and
(iii) and
(iv)
and
Answer:
(i) The circle passes through the points and
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Substituting in i) we get
… … … … … iv)
Solving ii) , iii) and iv) simultaneously, we get
Therefore the equation of the required circle is:
(ii) The circle passes through the points ,and
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Substituting in i) we get
… … … … … iv)
Solving ii) , iii) and iv) simultaneously, we get
Therefore the equation of the required circle is:
(iii) The circle passes through the points and
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Substituting in i) we get
… … … … … iv)
Solving ii) , iii) and iv) simultaneously, we get
Therefore the equation of the required circle is:
(iv) The circle passes through the points and
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Substituting in i) we get
… … … … … iv)
Solving ii) , iii) and iv) simultaneously, we get
Therefore the equation of the required circle is:
Question 3: Find the equation of the circle which passes through and has its center on the line
.
Answer:
The circle passes through and has its center on the line
.
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Since center lie on
, we get
… … … … … iv)
Solving ii) , iii) and iv) simultaneously, we get
Therefore the equation of the required circle is:
Question 4: Find the equation of the circle which passes through the points and has its center on the line
.
Answer:
The circle passes through and has its center on the line
.
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Since center lie on
, we get
… … … … … iv)
Solving ii) , iii) and iv) simultaneously, we get
Therefore the equation of the required circle is:
Question 5: Show that the points and
are concyclic.
Answer:
Consider and
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Substituting in i) we get
… … … … … iv)
Solving ii) , iii) and iv) simultaneously, we get
Therefore the equation of the required circle is:
… … … … … v)
Now we check if satisfies equation v)
. Therefore S lies on the circle.
Therefore, and
are con-cyclic.
Question 6: Show that the points and
all lie on a circle, and find its equation, center and radius.
Answer:
Consider and
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Substituting in i) we get
… … … … … iv)
Solving ii) , iii) and iv) simultaneously, we get
Therefore the equation of the required circle is:
… … … … … v)
Now we check if satisfies equation v)
. Therefore S lies on the circle.
Therefore, and
are con-cyclic.
Therefore center
Radius units.
Question 7: Find the equation of the circle which circumscribes the triangle formed by the lines:
i) and
ii) and
iii) and
iv) and
Answer:
i) Given equations:
… … … … … i)
… … … … … ii)
… … … … … iii)
Solving i) , ii) and iii) we get the vertices
The equation of circle is … … … … … iv)
Substituting in iv) we get
… … … … … v)
Substituting in iv) we get
… … … … … vi)
Substituting in iv) we get
… … … … … vii)
Solving v) , vi) and vii) simultaneously, we get
Therefore the equation of the required circle is:
ii) Given equations:
… … … … … i)
… … … … … ii)
… … … … … iii)
Solving i) , ii) and iii) we get the vertices
The equation of circle is … … … … … iv)
Substituting in iv) we get
… … … … … v)
Substituting in iv) we get
… … … … … vi)
Substituting in iv) we get
… … … … … vii)
Solving v) , vi) and vii) simultaneously, we get
Therefore the equation of the required circle is:
iii) Given equations:
… … … … … i)
… … … … … ii)
… … … … … iii)
Solving i) , ii) and iii) we get the vertices
The equation of circle is … … … … … iv)
Substituting in iv) we get
… … … … … v)
Substituting in iv) we get
… … … … … vi)
Substituting in iv) we get
… … … … … vii)
Solving v) , vi) and vii) simultaneously, we get
Therefore the equation of the required circle is:
iv) Given equations:
… … … … … i)
… … … … … ii)
… … … … … iii)
Solving i) , ii) and iii) we get the vertices
The equation of circle is … … … … … iv)
Substituting in iv) we get
… … … … … v)
Substituting in iv) we get
… … vi)
Substituting in iv) we get
… … … … … vii)
Solving v) , vi) and vii) simultaneously, we get
Therefore the equation of the required circle is:
Question 8: Prove that the centers of the three circles ,
and
are collinear.
Answer:
Given equations of the circle are:
Area of the circle formed between the three centers
Area
Therefore the three centers are collinear.
Question 9: Prove that the radii of the circles ,
and
are in AP.
Answer:
Given equations of the circle are:
Radius
Radius
We see that
Therefore are in A.P.
Question 10: Find the equation of the circle which passes through the origin and cuts off chords of lengths and
on the positive side of the x-axis and y-axis respectively.
Answer:
Please refer to adjoining figure.
Center Mid point of
Therefore the equation of the circle is:
Question 11: Find the equation of the circle concentric with the circle and double of its area.
Answer:
Given equation:
Therefore center
Radius
The center remains the same but the area of the new circle is double that of the original circle. Therefore, the radius of the new circle:
Therefore the equation of the required circle is
Question 12: Find the equation to the circle which passes through the points and whose radius is
. Show that there are two such circles.
Answer:
We know that the general equation of the circle is . Since the circle’s radius is
, we have
… … … … … i)
The circle passes through and
. Therefore,
… … … … … ii)
… … … … … iii)
… … … … … iv)
Substituting iv) in ii) we get
or
When
When
Therefore the equation of the circle are:
Question 13: Find the equation of the circle concentric with and which touches the y-axis.
Answer:
Given the circle is .
Therefore the center
The required circle is concentric with the given center, therefore center of the required circle is also
This circle also touches y-axis , therefore the radius
Therefore the equation of the circle is:
Question 14: If a circle passes through the points , then find the coordinates of its center.
Answer:
The circle passes through the points
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Substituting in i) we get
… … … … … iv)
Therefore center
Question 15: Find the equation of the circle which passes through the points and
and the center lies on the straight line
Answer:
The circle passes through and
and the center lies on the straight line
The equation of circle is … … … … … i)
Substituting in i) we get
… … … … … ii)
Substituting in i) we get
… … … … … iii)
Since center lie on
, we get
… … … … … iv)
Subtracting ii) from iii) we get
… … … … … v)
Solving iv) , v), we get
Substituting in ii) we get
Therefore the equation of the required circle is: