Note: The general equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0 where the center is \displaystyle  ( -g, -f) and radius \displaystyle  = \sqrt{g^2 +f^2 - c}

Question 1: Find the coordinates of the center and radius of each of the following circles :

i) \displaystyle x^2 + y^2 + 6x - 8 y - 24 = 0      ii) \displaystyle 2x^2 + 2y^2 - 3x + 5y = 7

iii) \displaystyle  \frac{1}{2} ( x^2 + y^2 ) + x \cos \theta + y \sin \theta - 4 = 0      iv) \displaystyle  x^2 + y^2 -ax-by = 0

Answer:

i)        Give equation : \displaystyle x^2 + y^2 + 6x - 8 y - 24 = 0

Comparing it with \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0 , we get,

\displaystyle  g = - 3 , \hspace{0.5cm} f = - 4 , \hspace{0.5cm} c = - 24

Therefore center \displaystyle  = ( -g, -f) = ( -3, 4)

Radius \displaystyle  = \sqrt{g^2 +f^2 - c} = \sqrt{ 3^2 + ( -4)^2 - ( -24)  }   = \sqrt{49} = 7

ii)      Give equation : \displaystyle 2x^2 + 2y^2 - 3x + 5y = 7

\displaystyle  \Rightarrow x^2 + y^2 - \frac{3}{2}  x + \frac{5}{2} y - \frac{7}{2}  = 0

Comparing it with \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0 , we get,

\displaystyle  g =  \frac{-3}{4}  , \hspace{0.5cm} f = \frac{5}{4}  , \hspace{0.5cm} c =   \frac{-7}{2}

Therefore center \displaystyle  = ( -g, -f) = (   \frac{3}{4}   , -   \frac{5}{4}   )

Radius \displaystyle  = \sqrt{g^2 +f^2 - c} = \sqrt{ (\frac{-3}{4})^2 + ( \frac{5}{4} )^2 - ( \frac{-7}{2})  } 

\displaystyle  = \sqrt{\frac{9}{16}+\frac{25}{16} + \frac{7}{2}} = \frac{\sqrt{90}}{4} = \frac{3\sqrt{10}}{4}

iii)      Given equation \displaystyle  \frac{1}{2}   ( x^2 + y^2 ) + x \cos \theta + y \sin \theta - 4 = 0

\displaystyle  \Rightarrow x^2 + y^2 + 2 \cos \theta x + 2 \sin \theta y - 8 = 0

Comparing it with \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0 , we get,

\displaystyle  g = \cos \theta , \hspace{0.5cm} f = \sin \theta , \hspace{0.5cm} c = - 8

Therefore center \displaystyle  = ( -g, -f) = ( -\cos \theta, - \sin \theta)

Radius \displaystyle  = \sqrt{g^2 +f^2 - c} = \sqrt{ (- \cos \theta)^2 + ( - \sin \theta )^2 - ( -8)  }   = \sqrt{9} = 3

iv)     Given equation \displaystyle x^2 + y^2 -ax-by = 0

Comparing it with \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0 , we get,

\displaystyle  g =   \frac{-a}{2}   , \hspace{0.5cm} f =   \frac{-b}{2}   , \hspace{0.5cm} c = 0

Therefore center \displaystyle  = ( -g, -f) = (   \frac{a}{2}   ,   \frac{b}{2}   )

Radius \displaystyle  = \sqrt{g^2 +f^2 - c} = \sqrt{ (\frac{-a}{2} )^2 + ( \frac{-b}{2})^2 - ( 0)  }   = \frac{\sqrt{a^2+b^2}}{2} 

\displaystyle  \\

Question 2: Find the equation of the circle passing through the points:

(i) \displaystyle  (5,7), (8, 1) and \displaystyle  (1, 3)      (ii) \displaystyle  (1,2), (3, - 4) ,and \displaystyle  (5, - 6)

(iii) \displaystyle  (5, - 8), (- 2,9) and \displaystyle  (2,1)      (iv) \displaystyle  (0, 0), (-2, 1) and \displaystyle  (- 3,2)

Answer:

(i)      The circle passes through the points \displaystyle  (5,7), (8, 1) and \displaystyle  (1, 3)

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  (5, 7) in i) we get

\displaystyle  25 + 49 + 10g + 14f + c = 0 \hspace{0.5cm} \Rightarrow 10g+14f+c = -74      … … … … … ii)

Substituting \displaystyle  (8, 1) in i) we get

\displaystyle  64 + 1 + 16g + 2f + c = 0 \hspace{0.5cm} \Rightarrow 16g+2f+c = -65      … … … … … iii)

Substituting \displaystyle  (1,3) in i) we get

\displaystyle  1 + 9 + 2g + 6f + c = 0 \hspace{0.5cm} \Rightarrow 2g+6f+c = -10      … … … … … iv)

Solving ii) , iii)  and iv) simultaneously, we get

\displaystyle  g =   \frac{-29}{6}   , \hspace{0.5cm} f =   \frac{-19}{6}   , \hspace{0.5cm} c=   \frac{56}{3}  

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 -   \frac{29}{3}   x -   \frac{19}{3}   y +   \frac{56}{3}   = 0

\displaystyle  \Rightarrow 3(x^2+y^2) - 39x-19y+56=0

(ii)     The circle passes through the points \displaystyle  (1,2), (3, - 4) ,and \displaystyle  (5, - 6)

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  (1,2) in i) we get

\displaystyle  1 + 4 + 2g + 4f + c = 0 \hspace{0.5cm} \Rightarrow 2g+4f+c = -5      … … … … … ii)

Substituting \displaystyle  (3,-4) in i) we get

\displaystyle  9 + 16 + 6g -8f + c = 0 \hspace{0.5cm} \Rightarrow 6g-8f+c = -25      … … … … … iii)

Substituting \displaystyle  (5, -6) in i) we get

\displaystyle  25 +36 + 10g -12f + c = 0 \hspace{0.5cm} \Rightarrow 10g-12f+c = -61      … … … … … iv)

Solving ii) , iii)  and iv) simultaneously, we get

\displaystyle  g = -11, \hspace{0.5cm} f = -2, \hspace{0.5cm} c= 25

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 - 22 x --4 y + 25 = 0

(iii)    The circle passes through the points \displaystyle  (5, - 8), (- 2,9) and \displaystyle  (2,1)

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  (5,-8) in i) we get

\displaystyle  25 + 64 + 10g -16f + c = 0 \hspace{0.5cm} \Rightarrow 10g-16f+c = -91      … … … … … ii)

Substituting \displaystyle  (-2, 9) in i) we get

\displaystyle  4 + 81 -4g +18f + c = 0 \hspace{0.5cm} \Rightarrow -4g+18f+c = -85      … … … … … iii)

Substituting \displaystyle  (2, 1) in i) we get

\displaystyle  4 +1 + 4g +2f + c = 0 \hspace{0.5cm} \Rightarrow 4g+2f+c = -5      … … … … … iv)

Solving ii) , iii)  and iv) simultaneously, we get

\displaystyle  g = 58, \hspace{0.5cm} f = 24, \hspace{0.5cm} c= -285

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 +116 x +48 y -285 = 0

(iv)    The circle passes through the points \displaystyle  (0, 0), (-2, 1) and \displaystyle  (- 3,2)

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  (0,0) in i) we get

\displaystyle  0 + 0 + 0 + 0 + c = 0 \hspace{0.5cm} \Rightarrow c = 0      … … … … … ii)

Substituting \displaystyle  (-2,1) in i) we get

\displaystyle  4 + 1 -4g + 2f + c = 0 \hspace{0.5cm} \Rightarrow -4g+2f  = 0      … … … … … iii)

Substituting \displaystyle  (-3, 2) in i) we get

\displaystyle  9 + 4 -6g + 4f + c = 0 \hspace{0.5cm} \Rightarrow -6g+4f = -13      … … … … … iv)

Solving ii) , iii)  and iv) simultaneously, we get

\displaystyle  g =   \frac{-3}{2}   , \hspace{0.5cm} f =   \frac{-11}{2}   , \hspace{0.5cm} c= 0

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 - 3 x -11 y  = 0

\displaystyle  \\

Question 3: Find the equation of the circle which passes through \displaystyle  (3,1), (-2, 0) and has its center on the line \displaystyle  2x-y=3 .

Answer:

The circle passes through \displaystyle  (3,1), (-2, 0) and has its center on the line \displaystyle  2x-y=3 .

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  (3, -2) in i) we get

\displaystyle  9+4+6g-4f+c = 0 \hspace{0.5cm} \Rightarrow 6g-4f+c = -13      … … … … … ii)

Substituting \displaystyle  (-2,0) in i) we get

\displaystyle  4 + 0 -4g + 0 + c = 0 \hspace{0.5cm} \Rightarrow -4g+c  = -4      … … … … … iii)

Since center \displaystyle  (-g, -f) lie on \displaystyle  2x-y=3 , we get

\displaystyle  -2g+f = 3       … … … … … iv)

Solving ii) , iii)  and iv) simultaneously, we get

\displaystyle  g =   \frac{3}{2}   , \hspace{0.5cm} f = 6  , \hspace{0.5cm} c= 2

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 + 3 x +12 y +2  = 0

\displaystyle  \\

Question 4: Find the equation of the circle which passes through the points \displaystyle  (3,7), (5,5) and has its center on the line \displaystyle  x - 4y =1 .

Answer:

The circle passes through \displaystyle  (3,7), (5,5) and has its center on the line \displaystyle  x - 4y =1 .

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  (3, 7) in i) we get

\displaystyle  9+49+6g+14f+c = 0 \hspace{0.5cm} \Rightarrow 6g+14f+c = -58      … … … … … ii)

Substituting \displaystyle  (5,5) in i) we get

\displaystyle  25 + 25 +10g + 10f + c = 0 \hspace{0.5cm} \Rightarrow 10g + 10f + c  = -50      … … … … … iii)

Since center \displaystyle  (-g, -f) lie on \displaystyle  2x-y=3 , we get

\displaystyle  -g+4f = 1       … … … … … iv)

Solving ii) , iii)  and iv) simultaneously, we get

\displaystyle  g = 3 , \hspace{0.5cm} f = 1  , \hspace{0.5cm} c= -90

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 + 6 x +2 y -90  = 0

\displaystyle  \\

Question 5: Show that the points \displaystyle  (3, - 2), (1, 0), (-1, - 2) and \displaystyle  (1, - 4) are concyclic.

Answer:

Consider \displaystyle  P(3, - 2), Q(1, 0), R(-1, - 2) and \displaystyle  S(1, - 4)

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  P(3, -2) in i) we get

\displaystyle  9 + 4 + 6g -4f + c = 0 \hspace{0.5cm} \Rightarrow 6g-4f+c = -13      … … … … … ii)

Substituting \displaystyle  Q(1, 0) in i) we get

\displaystyle  1 + 0 +2g + 0 + c = 0 \hspace{0.5cm} \Rightarrow 2g+ c  = -1      … … … … … iii)

Substituting \displaystyle  R(-1, 2) in i) we get

\displaystyle  1 + 4 -2g + 4f + c = 0 \hspace{0.5cm} \Rightarrow -2g+4f  +c = -5      … … … … … iv)

Solving ii) , iii)  and iv) simultaneously, we get

\displaystyle  g = -1 , \hspace{0.5cm} f = 2  , \hspace{0.5cm} c= 1

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 - 2 x +4 y+1  = 0      … … … … … v)

Now we check if \displaystyle  S( 1, -4) satisfies equation  v)

\displaystyle  1^2 + ( -4)^2 - 2 ( 1) + 4 ( -4) +1 = 0 . Therefore S lies on the circle.

Therefore, \displaystyle  P(3, - 2), Q(1, 0), R(-1, - 2) and \displaystyle  S(1, - 4) are con-cyclic.

\displaystyle  \\

Question 6: Show that the points \displaystyle  (5,5), (6, 4), (-2,4) and \displaystyle  (7,1) all lie on a circle, and find its equation, center and radius.

Answer:

Consider \displaystyle  P(5,5), Q(6, 4), R(-2,4) and \displaystyle  S(7,1)

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  P(5,5) in i) we get

\displaystyle  25 + 25 + 10g +10f + c = 0 \hspace{0.5cm} \Rightarrow 10g +10f + c = -50      … … … … … ii)

Substituting \displaystyle  Q(6,4) in i) we get

\displaystyle  36 + 16 +12g + 8f + c = 0 \hspace{0.5cm} \Rightarrow 12g + 8f + c  = -52      … … … … … iii)

Substituting \displaystyle  R(-2,4) in i) we get

\displaystyle  4 + 16 -4g + 8f + c = 0 \hspace{0.5cm} \Rightarrow -4g + 8f + c  = -20    … … … … … iv)

Solving ii) , iii)  and iv) simultaneously, we get

\displaystyle  g = -2 , \hspace{0.5cm} f = -1  , \hspace{0.5cm} c= -20

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 - 4 x -2 y -20 = 0      … … … … … v)

Now we check if \displaystyle  S( 7, 1) satisfies equation  v)

\displaystyle  7^2 + 1^2 - 4 ( 7) -2 ( 1) -20 = 0 . Therefore S lies on the circle.

Therefore, \displaystyle  P(5,5), Q(6, 4), R(-2,4) and \displaystyle  S(7,1) are con-cyclic.

Therefore center \displaystyle  = ( -g, -f) = ( 2, 1)

Radius \displaystyle  = \sqrt{g^2+f^2-c} = \sqrt{4+1+20} = \sqrt{25} = 5 units.

\displaystyle  \\

Question 7: Find the equation of the circle which circumscribes the triangle formed by the lines:

i) \displaystyle x+y+3=0 , x-y+1=0 and \displaystyle x = 3      

ii) \displaystyle 2x+y-3=0, x+y-1=0 and \displaystyle 3x+2y - 5 = 0

iii) \displaystyle  x+y = 2, 3x-4y=6   and \displaystyle  x - y = 0      

iv) \displaystyle  y = x + 2 , 3y = 4x   and \displaystyle  2y = 3x

Answer:

i)        Given equations:

\displaystyle  x+y+3=0 \hspace{0.5cm} \Rightarrow x+y = - 3      … … … … … i)

\displaystyle  x-y+1=0 \hspace{0.5cm} \Rightarrow x-y = - 1      … … … … … ii)

\displaystyle  x = 3      … … … … … iii)

Solving i) , ii) and iii) we get the vertices \displaystyle  A( -2, 1), B( 3, 4), C( 3, -6)

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … iv)

Substituting \displaystyle  A( -2, 1) in iv) we get

\displaystyle  4 + 1 -4g +2f + c = 0 \hspace{0.5cm} \Rightarrow -4g +2f + c = -5      … … … … … v)

Substituting \displaystyle  B( 3, 4) in iv) we get

\displaystyle  9 + 16 +6g + 8f + c = 0 \hspace{0.5cm} \Rightarrow 6g + 8f + c = -25      … … … … … vi)

Substituting \displaystyle  C( 3, -6) in iv) we get

\displaystyle  9 + 36 +6g -12f + c = 0 \hspace{0.5cm} \Rightarrow 6g -12f + c  = -45    … … … … … vii)

Solving v) , vi)  and vii) simultaneously, we get

\displaystyle  g = -3 , \hspace{0.5cm} f = 1  , \hspace{0.5cm} c= -15

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 - 6 x +2 y -15 = 0

ii)      Given equations:

\displaystyle  2x+y-3=0 \hspace{0.5cm} \Rightarrow 2x+y = 3      … … … … … i)

\displaystyle  x+y-1=0 \hspace{0.5cm} \Rightarrow x+y =  1      … … … … … ii)

\displaystyle  3x+2y - 5 = 0 \hspace{0.5cm} \Rightarrow 3x+2y = 5      … … … … … iii)

Solving i) , ii) and iii) we get the vertices \displaystyle  A( 2, -1), B( 3, -2), C( 1,1)

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … iv)

Substituting \displaystyle  A( 2, -1) in iv) we get

\displaystyle  4 + 1 +4g -2f + c = 0 \hspace{0.5cm} \Rightarrow 4g -2f + c = -5      … … … … … v)

Substituting \displaystyle  B( 3, -2) in iv) we get

\displaystyle  9 + 4 +6g -4f + c = 0 \hspace{0.5cm} \Rightarrow 6g -4f + c = -13      … … … … … vi)

Substituting \displaystyle  C( 1,1) in iv) we get

\displaystyle  1 + 1 +2g +2f + c = 0 \hspace{0.5cm} \Rightarrow 2g +2f + c  = -2    … … … … … vii)

Solving v) , vi)  and vii) simultaneously, we get

\displaystyle  g =   \frac{-13}{2}   , \hspace{0.5cm} f =   \frac{-5}{2}     , \hspace{0.5cm} c= 16

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 - 13 x -5 y +16 = 0

iii)     Given equations:

\displaystyle  x+y = 2       … … … … … i)

\displaystyle  3x-4y=6      … … … … … ii)

\displaystyle  x - y = 0      … … … … … iii)

Solving i) , ii) and iii) we get the vertices \displaystyle  A(2,0), B( -6,-6), C( 0,0 )

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … iv)

Substituting \displaystyle  A( 2,0 ) in iv) we get

\displaystyle  4 + 0 +4g +0 + c = 0 \hspace{0.5cm} \Rightarrow 4g  + c = -4      … … … … … v)

Substituting \displaystyle  B( -6,-6 ) in iv) we get

\displaystyle  36 + 36 -12 g -12 f + c = 0 \hspace{0.5cm} \Rightarrow -12g -12f + c = -72      … … … … … vi)

Substituting \displaystyle  C( 1,1) in iv) we get

\displaystyle  1 + 1 +2g +2f + c = 0 \hspace{0.5cm} \Rightarrow 2g +2f + c  = -2    … … … … … vii)

Solving v) , vi)  and vii) simultaneously, we get

\displaystyle  g = 2 , \hspace{0.5cm} f = 3  , \hspace{0.5cm} c= -12

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 +4 x +6 y -12 = 0

iv)     Given equations:

\displaystyle  y = x + 2 \hspace{0.5cm} \Rightarrow -x+y = 2      … … … … … i)

\displaystyle  3y = 4x \hspace{0.5cm} \Rightarrow -4x+3y=0      … … … … … ii)

\displaystyle  2y = 3x \hspace{0.5cm} \Rightarrow -3x+2y=0      … … … … … iii)

Solving i) , ii) and iii) we get the vertices \displaystyle  A(4, 6), B( 6, 8 ), C( 0, 0 )

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … iv)

Substituting \displaystyle  A( 4, 6 ) in iv) we get

\displaystyle  16 + 36 +8 g +2f + c = 0 \hspace{0.5cm} \Rightarrow 8 g +2f + c = -54      … … … … … v)

Substituting \displaystyle  B( 6, 8 ) in iv) we get

\displaystyle  36 + 64 +12g + 16f + c = 0 \hspace{0.5cm} \Rightarrow 12g + 16f + c = -100      … … vi)

Substituting \displaystyle  C( 3, -6) in iv) we get

\displaystyle  0 + 0 +0 +0 + c = 0 \hspace{0.5cm} \Rightarrow  c  = 0    … … … … … vii)

Solving v) , vi)  and vii) simultaneously, we get

\displaystyle  g = -23 , \hspace{0.5cm} f = 21  , \hspace{0.5cm} c= 0

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 - 46 x +24 y  = 0

\displaystyle  \\

Question 8: Prove that the centers of the three circles \displaystyle  x^2 + y^2 - 4x - 6y -12=0 , \displaystyle  x^2 + y^2 + 2x + 4y -10=0 and \displaystyle  x^2 + y^2 - 10x- 16y -1 =0 are collinear.

Answer:

Given equations of the circle are:

\displaystyle  x^2 + y^2 - 4x - 6y -12=0 \hspace{0.5cm} \Rightarrow  \text{ Center } = ( 2, 3)

\displaystyle  x^2 + y^2 + 2x + 4y -10=0 \hspace{0.5cm} \Rightarrow    \text{ Center } = ( -1,-2)

\displaystyle  x^2 + y^2 - 10x- 16y -1 =0 \hspace{0.5cm} \Rightarrow    \text{ Center }= ( 5,8)

Area of the circle formed between the three centers

Area \displaystyle  =   \frac{1}{2}   | 2( -2-8) -1( 8 -3) + 5 ( 3+2) | =   \frac{1}{2}   | -20 - 5 + 25 | = 0

Therefore the three centers are collinear.

\displaystyle  \\

Question 9:  Prove that the radii of the circles \displaystyle  x^2 + y^2 =1 , \displaystyle  x^2 + y^2 -2x-6y-6=0 and \displaystyle  x^2 + y^2 -4x-12y -9 = 0 are in AP.

Answer:

Given equations of the circle are:

\displaystyle  x^2 + y^2 =1 \hspace{0.5cm} \Rightarrow  \text{ Radius } = r_1 = 1

\displaystyle  x^2 + y^2 -2x-6y-6=0

Radius \displaystyle  = r_2 = \sqrt{ g^2 + f^2 - c } = \sqrt{ (-1)^2 + ( -3)^2 - ( -6) } = \sqrt{16} = 4

\displaystyle  x^2 + y^2 -4x-12y -9 = 0

Radius \displaystyle  = r_3 = \sqrt{ g^2 + f^2 - c } = \sqrt{ (-2)^2 + ( -6)^2 - ( -9) } = \sqrt{49} = 7

We see that \displaystyle  2r_2 = r_1 + r_3

Therefore \displaystyle  r_1, r_2 , r_3 are in A.P.

\displaystyle  \\

Question 10: Find the equation of the circle which passes through the origin and cuts off chords of lengths \displaystyle  4 and \displaystyle  6 on the positive side of the x-axis and y-axis respectively.

Answer:

Please refer to adjoining figure.

Center \displaystyle  ( C) =   Mid point of \displaystyle  AB = ( 2, 3)

Therefore the equation of the circle is:

\displaystyle  x^2 + y^2 + 2(-2)x + 2 ( -3) y = 0      \displaystyle  \Rightarrow x^2 + y^2 - 4x - 6y = 0

\displaystyle  \\

Question 11: Find the equation of the circle concentric with the circle \displaystyle  x^2 + y^2 - 6x + 12y + 15 = 0 and double of its area.

Answer:

Given equation: \displaystyle  x^2 + y^2 - 6x + 12y + 15 = 0

Therefore center \displaystyle  = ( -g, -f) = ( 3, -6)

Radius \displaystyle  = \sqrt{g^2+f^2-c} = \sqrt{(-3)^2+6^2 - 15} = \sqrt{30}

The center remains the same but the area of the new circle is double that of the original circle. Therefore, the radius of the new circle:

\displaystyle  2 \times [ \pi ( \sqrt{30})^2 ] = \pi r^2 \hspace{0.5cm} \Rightarrow r = 2\sqrt{15}

Therefore the equation of the required circle is

\displaystyle  (x-3)^2 + [ y - ( -6) ] ^2 = (2\sqrt{15})^2

\displaystyle  \Rightarrow x^2 + 9 - 6x + y^2 + 36 + 12y = 60

\displaystyle  \Rightarrow x^2 + y^2 - 6x + 12y - 15 = 0

\displaystyle  \\

Question 12: Find the equation to the circle which passes through the points \displaystyle  (1,1) (2,2) and whose radius is \displaystyle  1 . Show that there are two such circles.

Answer:

We know that the general equation of the circle is \displaystyle  ( x-h)^2 + ( y - k)^2 = r^2 . Since the circle’s radius is \displaystyle  1 , we have

\displaystyle  ( x-h)^2 + ( y - k)^2 = 1      … … … … … i)

The circle passes through \displaystyle  (1,1) and \displaystyle  ( 2, 2) . Therefore,

\displaystyle  ( 1- h)^2 + ( 1-k)^2 = 1      … … … … … ii)

\displaystyle  ( 2- h)^2 + ( 2-k)^2 = 1      … … … … … iii)

\displaystyle  \therefore  ( 1- h)^2 + ( 1-k)^2 = ( 2- h)^2 + ( 2-k)^2

\displaystyle  \Rightarrow 1 + h^2 - 2h + 1 + k^2 - 2k = 4 + h^2 - 4h + 4 + k^2 - 4k

\displaystyle  \Rightarrow 2 - 2h - 2k = 8 - 4h - 4k

\displaystyle  \Rightarrow 2h + 2k = 6

\displaystyle  \Rightarrow h + k = 3

\displaystyle  \Rightarrow h = 3-k      … … … … … iv)

Substituting iv) in ii) we get

\displaystyle  [ 1 - ( 3-k)]^2 + ( 1- k)^2 = 1

\displaystyle  \Rightarrow ( -2 + k) ^2 + ( 1-k)^2 = 1

\displaystyle  \Rightarrow 4 + k^2 - 4k + 1 + k^2 - 2k = 1

\displaystyle  \Rightarrow 2k^2 - 6k + 4=0

\displaystyle  \Rightarrow k^2 - 3k + 2 = 0

\displaystyle  \Rightarrow ( k-1)(k-2) = 0

\displaystyle  \Rightarrow k = 1 or \displaystyle  \Rightarrow k = 2

When \displaystyle  k = 2, \hspace{0.5cm} \Rightarrow h = 3-2 = 1

When \displaystyle  k = 1, \hspace{0.5cm} \Rightarrow h = 3-1 = 2

Therefore the equation of the circle are:

\displaystyle  ( x-2)^2 + ( y - 1)^2 = 1 \hspace{0.5cm} \Rightarrow x^2 + y^2 - 4x - 2y + 4 = 0

\displaystyle  ( x-1)^2 + ( y - 2)^2 = 1 \hspace{0.5cm} \Rightarrow x^2 + y^2 - 2x - 4y + 4 = 0

\displaystyle  \\

Question 13: Find the equation of the circle concentric with \displaystyle  x^2 + y^2 - 4x - 6y- 3 = 0 and which touches the y-axis.

Answer:

Given the circle is \displaystyle  x^2 + y^2 - 4x - 6y- 3 = 0 .

Therefore the center \displaystyle  = ( - g, -f) = ( 2, 3)

The required circle is concentric with the given center, therefore center of the required circle is also \displaystyle  ( 2, 3)

This circle also touches y-axis , therefore the radius \displaystyle  = 2

Therefore the equation of the circle is:

\displaystyle  (x-2)^2 + ( y - 3)^2 = 2^2 \hspace{0.5cm} \Rightarrow  x^2 + y^2 - 4x - 6y + 9 = 0

\displaystyle  \\

Question 14: If a circle passes through the points \displaystyle  (0,0), (a,0), (0,b) , then find the coordinates of  its center.

Answer:

The circle passes through the points \displaystyle  (0,0), (a,0), (0,b)

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  (0,0 ) in i) we get

\displaystyle  0 + 0 + 0 + 0+ c = 0 \hspace{0.5cm} \Rightarrow c = 0      … … … … … ii)

Substituting \displaystyle  (a,0) in i) we get

\displaystyle  a^2 + 2ag = 0 \hspace{0.5cm} \Rightarrow a( a+2g) = 0  \hspace{0.5cm} \Rightarrow  g =   \frac{-a}{2}        … … … … … iii)

Substituting \displaystyle  (0, b) in i) we get

\displaystyle  b^2 + 2bf = 0 \hspace{0.5cm} \Rightarrow b(b+2f) = 0  \hspace{0.5cm} \Rightarrow  f =   \frac{-b}{2}       … … … … … iv)

Therefore center \displaystyle  = ( -g, -f) = (   \frac{a}{2}   ,   \frac{b}{2}   )

\displaystyle  \\

Question 15: Find the equation of the circle which passes through the points \displaystyle  (2, 3) and \displaystyle  (4,5) and the center lies on the straight line \displaystyle  y-4x+3=0

Answer:

The circle passes through \displaystyle  (2, 3) and \displaystyle  (4,5) and the center lies on the straight line \displaystyle  y-4x+3=0

The equation of circle is \displaystyle  x^2 + y^2 + 2gx + 2fy + c =0      … … … … … i)

Substituting \displaystyle  (2, 3) in i) we get

\displaystyle  4+9+4g-+6f+c = 0 \hspace{0.5cm} \Rightarrow 4g-+6f+c = -13      … … … … … ii)

Substituting \displaystyle  (4, 5) in i) we get

\displaystyle  16 + 25 +8g + 10f + c = 0 \hspace{0.5cm} \Rightarrow 8g + 10f + c  = -41      … … … … … iii)

Since center \displaystyle  (-g, -f) lie on \displaystyle  2x-y=3 , we get

\displaystyle  4g-f = -3       … … … … … iv)

Subtracting ii) from iii) we get

\displaystyle  4g+ 4f + 28 = 0      … … … … … v)

Solving iv) , v), we get

\displaystyle  g = -2  \hspace{0.5cm} \Rightarrow f = -5

Substituting in ii) we get

\displaystyle  41 - 16 - 50 + c = 0 \hspace{0.5cm} \Rightarrow c = 25

Therefore the equation of the required circle is:

\displaystyle  x^2 + y^2 -4 x -10 y +25  = 0