Question 1: Find the distance between the following pairs of points:

(i) \displaystyle P (1, - 1, 0) \text{ and }   Q (2, 1,2)            (ii) \displaystyle A (3,2, - 1) \text{ and }  B (-1, -1, 1)

Answer:

(i)      \displaystyle P (1, - 1, 0) \text{ and }   Q (2, 1,2)

\displaystyle PQ = \sqrt{ (x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2 }

\displaystyle = \sqrt{ (2-1)^2+(1+1)^2+(2-0)^2 }

\displaystyle = \sqrt{ 1^2 + 2^2 + 2^2 }

\displaystyle = \sqrt{9}

\displaystyle = 3 \text{ units }

(ii)     \displaystyle A (3,2, - 1) \text{ and }  B (-1, -1, 1)

\displaystyle AB = \sqrt{ (x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2 }

\displaystyle = \sqrt{ (-1-3)^2+(-1-2)^2+(-1+1)^2 }

\displaystyle = \sqrt{ (-4)^2 + (-3)^2 + (0)^2 }

\displaystyle = \sqrt{16+9+0}

\displaystyle = \sqrt{25}

\displaystyle = 5 \text{ units }

\\  

Question 2: Find the distance between the points \displaystyle P and \displaystyle Q having coordinates \displaystyle (- 2, 3,1) and \displaystyle (2, 1, 2)

Answer:

\displaystyle PQ = \sqrt{ (x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2 }

\displaystyle = \sqrt{ (2+2)^2+(1-3)^2+(2-1)^2 }

\displaystyle = \sqrt{ (4)^2 + (-2)^2 + (1)^2 }

\displaystyle = \sqrt{16+4+1}

\displaystyle = \sqrt{9}

\displaystyle = \sqrt{21} \text{ units }

\\  

Question 3: Using distance formula prove that the following points are collinear:

(i) \displaystyle A (4, - 3, -1), B (5, -7,6) \text{ and }  C (3,1, - 8)

(ii) \displaystyle P (0,7, -7), Q (1, 4, - 5) \text{ and }  R (- 1,10, - 9)

(iii) \displaystyle A (3, - 5,1), B (-1,0, 8) \text{ and }  C (7, - 10, - 6)

Answer:

(i) Given \displaystyle A (4, - 3, -1), B (5, -7,6) \text{ and }  C (3,1, - 8)

\displaystyle AB = \sqrt{ (5-4)^2+(-7+3)^2+(6+1)^2 }

\displaystyle = \sqrt{ (1)^2 + (-4)^2 + (7)^2 }

\displaystyle = \sqrt{1+16+49}

\displaystyle = \sqrt{66} \text{ units }

\displaystyle BC = \sqrt{ (3-5)^2+(1+7)^2+(-8-6)^2 }

\displaystyle = \sqrt{ (-2)^2 + (8)^2 + (-14)^2 }

\displaystyle = \sqrt{4+64+196}

\displaystyle = 2\sqrt{66} \text{ units }

\displaystyle AC = \sqrt{ (3-4)^2+(1+3)^2+(-8+1)^2 }

\displaystyle = \sqrt{ (-1)^2 + (4)^2 + (-7)^2 }

\displaystyle = \sqrt{1+16+49}

\displaystyle = \sqrt{66} \text{ units }

Here, \displaystyle AB + AC = \sqrt{66} + \sqrt{66} = 2\sqrt{66} = BC

Hence, the points are collinear.

(ii) Given \displaystyle P (0,7, -7), Q (1, 4, - 5) \text{ and }  R (- 1,10, - 9)

\displaystyle PQ = \sqrt{ (1-0)^2+(4-7)^2+(-5+7)^2 }

\displaystyle = \sqrt{ (1)^2 + (-3)^2 + (2)^2 }

\displaystyle = \sqrt{1+9+4}

\displaystyle = \sqrt{14} \text{ units }

\displaystyle QR = \sqrt{ (-1-1)^2+(10-4)^2+(-9+5)^2 }

\displaystyle = \sqrt{ (-2)^2 + (6)^2 + (-4)^2 }

\displaystyle = \sqrt{4+36+16}

\displaystyle = 2\sqrt{14} \text{ units }

\displaystyle PR = \sqrt{ (-1-0)^2+(10-7)^2+(-9+7)^2 }

\displaystyle = \sqrt{ (-1)^2 + (3)^2 + (-2)^2 }

\displaystyle = \sqrt{1+9+4}

\displaystyle = \sqrt{14} \text{ units }

Here, \displaystyle PQ + PR = \sqrt{14} + \sqrt{14} = 2\sqrt{14} = QR

Hence, the points are collinear.

(iii) Given \displaystyle A (3, - 5,1), B (-1,0, 8) \text{ and }  C (7, - 10, - 6)

\displaystyle AB = \sqrt{ (-1-3)^2+(0+5)^2+(8-1)^2 }

\displaystyle = \sqrt{ (-4)^2 + (5)^2 + (7)^2 }

\displaystyle = \sqrt{16+25+49}

\displaystyle = 3\sqrt{10} \text{ units }

\displaystyle BC = \sqrt{ (7+1)^2+(-10-0)^2+(-6-8)^2 }

\displaystyle = \sqrt{ (8)^2 + (-10)^2 + (-14)^2 }

\displaystyle = \sqrt{64+100+196}

\displaystyle = 6\sqrt{10} \text{ units }

\displaystyle AC = \sqrt{ (7-3)^2+(-10+5)^2+(-6-1)^2 }

\displaystyle = \sqrt{ (4)^2 + (-5)^2 + (-7)^2 }

\displaystyle = \sqrt{16+25+49}

\displaystyle = 3\sqrt{10} \text{ units }

Here, \displaystyle AB + AC = 3\sqrt{10} + 3\sqrt{10} = 6\sqrt{10} = BC

Hence, the points are collinear.

\\  

Question 4: Determine the points in (i) \displaystyle xy-plane (ii) \displaystyle yz-plane and (iii) \displaystyle zx-plane which are equidistant from the points \displaystyle A (1, - 1, 0), B (2, 1, 2) \text{ and }   C (3, 2, - 1).

Answer:

(i)     We know that the z-coordinate of every point on the xy-plane is zero.

So let \displaystyle P(x, y, 0) be the point on the xy-plane such that \displaystyle PA = PB = PB

Now, \displaystyle PA = PB

\displaystyle \Rightarrow PA^2 = PB^2

\displaystyle \Rightarrow (x-1)^2+(y+1)^2 + (0-0)^2 = (x-2)^2+(y-1)^2 + (0-2)^2

\displaystyle \Rightarrow x^2 - 2x + 1 + y^2 + 2y + 1 = x^2 - 4x + 4 + y^2 - 2y + 1 + 4

\displaystyle \Rightarrow -2x + 4x + 2y + 2y + 2 - 9 = 0

\displaystyle \Rightarrow 2x+4y-7=0

\displaystyle \Rightarrow 2x+4y = 7 \text{   ... ... ... ... ... i)}

Now, \displaystyle PB = PC

\displaystyle \Rightarrow PB^2 = PC^2

\displaystyle \Rightarrow (x-2)^2+(y-1)^2 + (0-2)^2 = (x-3)^2+(y-2)^2 + (0+1)^2

\displaystyle \Rightarrow x^2 - 4x + 4 + y^2 - 2y + 1+4 = x^2 - 6x + 9 + y^2 - 4y + 4 + 1

\displaystyle \Rightarrow -4x + 6x - 2y + 4y + 9 - 14 = 0

\displaystyle \Rightarrow 2x+2y-5=0

\displaystyle \Rightarrow 2x+2y = 5 \text{   ... ... ... ... ... ii)}

Solving equation i) and ii) simultaneously. we get \displaystyle x = \frac{3}{2} \text{ and } y = 1

\displaystyle \text{Hence the required point is } \Big( \frac{3}{2}, 1, 0 \Big)

(ii)    We know that the x-coordinate of every point on the yz-plane is zero.

So let \displaystyle P(0, y, z) be the point on the xy-plane such that \displaystyle PA = PB = PB

Now, \displaystyle PA = PB

\displaystyle \Rightarrow PA^2 = PB^2

\displaystyle \Rightarrow (0-1)^2+(y+1)^2 + (z-0)^2 = (0-2)^2+(y-1)^2 + (z-2)^2

\displaystyle \Rightarrow 1+y^2+2y+1+z^2=4+y^2-2y+1+z^2-4z+4

\displaystyle \Rightarrow 2y+2 = -2y-4z+9

\displaystyle \Rightarrow 2y+2y -4z= 9-2

\displaystyle \Rightarrow 4y-4z=7 \text{   ... ... ... ... ... i)}

Now, \displaystyle PB = PC

\displaystyle \Rightarrow PB^2 = PC^2

\displaystyle \Rightarrow (0-2)^2+(y-1)^2 + (z-2)^2 = (0-3)^2+(y-2)^2 + (z+1)^2

\displaystyle \Rightarrow 4+y^2-2y+1+z^2+4-4z=9+y^2-4y+4+z^2+2z+1

\displaystyle \Rightarrow -2y-4z+9 = -4y+2z+14

\displaystyle \Rightarrow -2y+4y -4z-2z= 14-9

\displaystyle \Rightarrow 2y-6z=5 \text{   ... ... ... ... ... ii)}

Solving equation i) and ii) simultaneously. we get \displaystyle y = \frac{11}{8} \text{ and } z = \frac{-3}{8}

\displaystyle \text{Hence the required point is } \Big(0,  \frac{11}{8}, \frac{-3}{8} \Big)

(iii)    We know that the y-coordinate of every point on the zx-plane is zero.

So let \displaystyle P(x, 0, z) be the point on the xy-plane such that \displaystyle PA = PB = PB

Now, \displaystyle PA = PB

\displaystyle \Rightarrow PA^2 = PB^2

\displaystyle \Rightarrow (x-1)^2+(0+1)^2 + (z-0)^2 = (x-2)^2+(0-1)^2 + (z-2)^2

\displaystyle \Rightarrow x^2 + 1 - 2x +1+z^2=x^2 - 4x + 4+1+z^2-4z+4

\displaystyle \Rightarrow -2x+2 = -4x-4z+9

\displaystyle \Rightarrow 2x-4z = 7 \text{   ... ... ... ... ... i)}

Now, \displaystyle PB = PC

\displaystyle \Rightarrow PB^2 = PC^2

\displaystyle \Rightarrow (x-2)^2+(0-1)^2 + (z-2)^2 = (x-3)^2+(0-2)^2 + (z+1)^2

\displaystyle \Rightarrow x^2 + 4 - 4x +1+z^2+4-4z=x^2 - 6x + 9+4+z^2+2z+1

\displaystyle \Rightarrow -4x+6x -4z-2z = 14-9

\displaystyle \Rightarrow 2x-6z = 5 \text{   ... ... ... ... ... ii)}

Solving equation i) and ii) simultaneously. we get \displaystyle x = \frac{11}{2} \text{ and } z = 1

\displaystyle \text{Hence the required point is } \Big(\frac{11}{2}, 0, 1 \Big)

\\  

Question 5: Determine the point on z-axis which is equidistant from the points \displaystyle (1,5,7) \text{ and }   (5, 1, - 4).

Answer:

Let M be the point on the z-axis.

Then the coordinates of M will be (0, 0, z)

Let M be equidistant from the points \displaystyle (1,5,7) \text{ and }   (5, 1, - 4).

\displaystyle AM = \sqrt{ (0-1)^2 + (0-5)^2 + ( z-7)^2 }

\displaystyle = \sqrt{ (-1)^2 + (-5)^2 + ( z-7)^2 }

\displaystyle = \sqrt{ 1 + 25 + z^2 - 14z + 49 }

\displaystyle = \sqrt{ z^2 - 14z + 75 }

\displaystyle BM = \sqrt{ (0-5)^2 + (0-1)^2 + ( z+4)^2 }

\displaystyle = \sqrt{ (-5)^2 + (-1)^2 + ( z+4)^2 }

\displaystyle = \sqrt{ 25 + 1 + z^2 +8z + 42 }

\displaystyle = \sqrt{ z^2 +8z + 42 }

Since \displaystyle AM = BM

\displaystyle \therefore \sqrt{ z^2 - 14z + 75 } = \sqrt{ z^2 +8z + 42 }

Squaring both sides \displaystyle z^2 - 14z + 75 = z^2 +8z + 42

\displaystyle \Rightarrow - 14z - 8z = 42- 75

\displaystyle \Rightarrow - 22z = - 33

\displaystyle \Rightarrow z = \frac{33}{22} = \frac{3}{2}

\displaystyle \text{Thus the coordinates of M are } \Big( 0, 0, \frac{3}{2} \Big)

\\  

Question 6: Find the point on y-axis which is equidistant from the points \displaystyle (3, 1, 2) \text{ and }   (5, 5, 2).

Answer:

Let the point of y-axis be \displaystyle M(0, y, 0) which is equidistant from the points \displaystyle P(3, 1, 2) \text{ and }   Q(5, 5, 2).

Therefore \displaystyle PM = QM

\displaystyle \therefore \sqrt{ (0-3)^2+(y-1)^2+(0-2)^2 }  = \sqrt{ (0-5)^2+(y-5)^2+(0-2)^2  }

\displaystyle \Rightarrow  \sqrt{ (-3)^2+y^2 + 2y + 1+(-2)^2 }  = \sqrt{ (-5)^2+y^2 + 10y + 25+(-2)^2  }

\displaystyle \Rightarrow  \sqrt{ 9+y^2 + 2y + 1+4 }  = \sqrt{ 25+y^2 + 10y + 25+4  }

\displaystyle \Rightarrow  \sqrt{ y^2 + 2y + 14 }  = \sqrt{ y^2 + 10y + 54  }

Squaring both sides we get

\displaystyle \Rightarrow y^2 + 2y + 14 = y^2 + 10y + 54

\displaystyle \Rightarrow 2y-10y = 54-14

\displaystyle \Rightarrow -8y = 40

\displaystyle \Rightarrow y = -5

Therefore the required point on the y-axis is \displaystyle (0, -5, 0)

\\  

Question 7: Find the points on \displaystyle z-axis which are at a distance \displaystyle \sqrt{21} from the point \displaystyle (1 , 2, 3) .

Answer:

Let the point of z-axis be \displaystyle A(0, 0, z)

\displaystyle AP = \sqrt{21}

\displaystyle \Rightarrow \sqrt{ (0-1)^2 + (0-2)^2 + (z-3)^2 } =  \sqrt{21}

\displaystyle \Rightarrow (-1)^2 + (-2)^2 + ( z-3)^2 = 21

\displaystyle \Rightarrow 1 + 4 + (z-3)^2 = 21

\displaystyle \Rightarrow (z-3)^2 = 21 - 5

\displaystyle \Rightarrow (z-3)^2 = 16

\displaystyle \Rightarrow (z-3) = \pm 4

\displaystyle \Rightarrow z = 7 \text{ or } z = -1

Hence the coordinates of the required point are \displaystyle ( 0, 0, 7) and \displaystyle (0, 0, -1)

\\  

Question 8: Prove that the triangle formed by joining the three points whose coordinates are \displaystyle (1,2,3), (2,3,1) \text{ and }   (3, 1,2) is an equilateral triangle.

Answer:

Let \displaystyle A(1,2,3), B(2,3,1) \text{ and }   C(3, 1,2) are the coordinates of the \displaystyle \triangle ABC

\displaystyle AB = \sqrt{ (2-1)^2 + ( 3-2)^2 + ( 1 -3)^2}

\displaystyle = \sqrt{ (1)^2 + (1)^2 + (-2)^2}

\displaystyle = \sqrt{ 1 + 1 + 4}

\displaystyle = \sqrt{6}

\displaystyle BC = \sqrt{ (3-2)^2 + ( 1-3)^2 + ( 2-1)^2}

\displaystyle = \sqrt{ (1)^2 + (-2)^2 + (1)^2}

\displaystyle = \sqrt{ 1 + 4 + 1}

\displaystyle = \sqrt{6}

\displaystyle CA = \sqrt{ (3-1)^2 + (1-2)^2 + (2 -3)^2}

\displaystyle = \sqrt{ (2)^2 + (-1)^2 + (-1)^2}

\displaystyle = \sqrt{ 4 + 1 + 1}

\displaystyle = \sqrt{6}

Now, \displaystyle AB = BC = CA

Therefore \displaystyle \triangle ABC is an equilateral triangle.

\\  

Question 9: Show that the points \displaystyle (0,7, 10), (- 1, 6,6) \text{ and }   (- 4,9,6) are the vertices of an isosceles right-angled triangle.

Answer:

Let \displaystyle A(0,7, 10), B(- 1, 6,6) \text{ and }   C(- 4,9,6) be the coordinates of \triangle ABC

\displaystyle AB = \sqrt{ (0+1)^2+(7-6)^2 + (10-2)^2 } = \sqrt{18} = 3\sqrt{2}

\displaystyle BC = \sqrt{ (-1+4)^2+(6-9)^2 + (6-6)^2 } = \sqrt{18} = 3\sqrt{2}

\displaystyle CA = \sqrt{ (0+4)^2+(7-9)^2 + (10-6)^2 } = \sqrt{36} = 6

Clearly, \displaystyle AB^2 + BC^2 = CA^2 \Rightarrow \angle ABC = 90^{\circ} \text{ and } AB = BC

Therefore the \displaystyle \triangle ABC is a right-angles isosceles triangle.

\\  

Question 10: Show that the points \displaystyle A (3,3,3),B(0,6,3), C(1.,7,7) \text{ and }   D(4,4,7) are the vertices of a square.

Answer:

Let \displaystyle A (3,3,3),B(0,6,3), C(1.,7,7) \text{ and }   D(4,4,7) are the vertices of a quadrilateral ABCD.

\displaystyle AB = \sqrt{ (0-3)^2+(6-3)^2 + (3-3)^2 } = \sqrt{18} = 3\sqrt{2}

\displaystyle BC = \sqrt{ (1-0)^2+(7-6)^2 + (7-3)^2 } = \sqrt{18} = 3\sqrt{2}

\displaystyle CD = \sqrt{ (4-1)^2+(4-7)^2 + (7-7)^2 } = \sqrt{18} = 3\sqrt{2}

\displaystyle DA = \sqrt{ (4-3)^2+(4-3)^2 + (7-3)^2 } = \sqrt{18} = 3\sqrt{2}

Therefore \displaystyle AB = BC = CD = DA. The four sides are equal.

\displaystyle AC = \sqrt{ (1-3)^2+(7-3)^2 + (7-3)^2 } = \sqrt{36} = 6

\displaystyle BD = \sqrt{ (4-0)^2+(4-6)^2 + (7-3)^2 } = \sqrt{36} = 6

Therefore \displaystyle AC = BD. The diagonals are equal.

Hence \displaystyle ABCD is a square.

\\  

Question 11: Prove that the point \displaystyle A(1,3,0), B(-5,5,2),C(-9,-1,2) \text{ and }   D(-9,-9,0) taken in order are the vertices of a parallelogram. Also, show that, \displaystyle ABCD is not a rectangle.

Answer:

Let \displaystyle A(1,3,0), B(-5,5,2),C(-9,-1,2) \text{ and }   D(-9,-9,0) are the vertices of a quadrilateral ABCD.

\displaystyle AB = \sqrt{ (-5-1)^2+(5-3)^2 + (2-0)^2 } = \sqrt{44} = 2\sqrt{11}

\displaystyle BC = \sqrt{ (-9+5)^2+(-1-5)^2 + (2-2)^2 } = \sqrt{52} = 2\sqrt{13}

\displaystyle CD = \sqrt{ (-3+9)^2+(-3+1)^2 + (0-2)^2 } = \sqrt{44} = 2\sqrt{11}

\displaystyle DA = \sqrt{ (1+3)^2+(3+3)^2 + (0-0)^2 } = \sqrt{52} = 2\sqrt{13}

Therefore \displaystyle AB = CD \text{ and } BC = DA. Since the opposite sides are equal, therefore, ABCD is a parallelogram.

\displaystyle AC = \sqrt{ (-9-1)^2+(-1-3)^2 + (2-0)^2 } = \sqrt{100+16+4}= \sqrt{120}

\displaystyle BD = \sqrt{ (-3+5)^2+(-3-5)^2 + (0-2)^2 } = \sqrt{4+64+4}= \sqrt{72} 

Therefore \displaystyle AC \neq BD. The diagonals are not equal.

Hence \displaystyle ABCD is not a rectangle.

\\  

Question 12: Show that the points \displaystyle A(1,3,4), B(-1,6,10), C(-7,4,7) \text{ and }   D(-5,1,1) are the vertices of a rhombus.

Answer:

Let \displaystyle A(1,3,4), B(-1,6,10), C(-7,4,7) \text{ and }   D(-5,1,1) are the vertices of a quadrilateral ABCD.

\displaystyle AB = \sqrt{ (-1-1)^2+(6-3)^2 + (10-4)^2 } = \sqrt{4+9+36} = \sqrt{49} = 7

\displaystyle BC = \sqrt{ (-7+1)^2+(4-6)^2 + (7-10)^2 } = \sqrt{36+4+9} = \sqrt{49} = 7

\displaystyle CD = \sqrt{ (-5+7)^2+(1-4)^2 + (1-7)^2 } = \sqrt{4+9+36} = \sqrt{49} = 7

\displaystyle DA = \sqrt{ (1+5)^2+(3-1)^2 + (4-1)^2 } = \sqrt{36+4+9} = \sqrt{49} = 7

Therefore \displaystyle AB = BC=CD+DA Since all sides are equal, therefore, ABCD is a rhombus.

\\  

Question 13: Prove that the tetrahedron with vertices at the points \displaystyle O (0,0,0), A (0,1,1),B(1, 0, 1) \text{ and }   C (1, 1, 0) is a regular one.

Answer:

The faces of a regular tetrahedron are equilateral triangles.

\displaystyle OA = \sqrt{ (0-0)^2+(0-1)^2 + (0-1)^2 } = \sqrt{0+1+1} = \sqrt{2}

\displaystyle OB = \sqrt{ (1-0)^2+(0-0)^2 + (1-0)^2 } = \sqrt{1+0+1} = \sqrt{2} 

\displaystyle OC = \sqrt{ (1-0)^2+(0-1)^2 + (1-1)^2 } = \sqrt{1+1+0} = \sqrt{2}

Hence this face is an equilateral triangle. Similarly, the other faces are equilateral triangles.

Hence the tetrahedron is a regular one.

\\  

Question 14: Show that the points \displaystyle (3,2,2), (-1,4,2), (0,5,6), (2, 1,2) lie on a sphere whose center is \displaystyle (1,3,4). Find also its radius.

Answer:

Let \displaystyle (3,2,2), (-1,4,2), (0,5,6), (2, 1,2) lie on a sphere whose center is \displaystyle (1,3,4).

Since AP, BP, CP and DP are radii, therefore AP = BP = CP = DP.

\displaystyle AP = \sqrt{ (1-3)^2 + ( 3-2)^2 + ( 4-2)^2}

\displaystyle = \sqrt{ (-2)^2 + (1)^2 + (2)^2}

\displaystyle = \sqrt{ 4 + 1 + 4}

\displaystyle = \sqrt{9} = 3

\displaystyle BP = \sqrt{ (1+1)^2 + ( 3-4)^2 + ( 4-2)^2}

\displaystyle = \sqrt{ (2)^2 + (-1)^2 + (2)^2}

\displaystyle = \sqrt{ 4 + 1 + 4}

\displaystyle = \sqrt{9} = 3

\displaystyle CP = \sqrt{ (1-0)^2 + (3-5)^2 + (4-6)^2}

\displaystyle = \sqrt{ (1)^2 + (-2)^2 + (-2)^2}

\displaystyle = \sqrt{ 1 + 4 + 4}

\displaystyle = \sqrt{9} = 3

\displaystyle DP = \sqrt{ (1-2)^2 + (3-1)^2 + (4-2)^2}

\displaystyle = \sqrt{ (-1)^2 + (2)^2 + (2)^2}

\displaystyle = \sqrt{ 1 + 4 + 4}

\displaystyle = \sqrt{9} = 3

Now, \displaystyle AP = BP = CP=DP

Hence \displaystyle (3,2,2), (-1,4,2), (0,5,6), (2, 1,2) lie on a sphere whose center is \displaystyle (1,3,4). and radius is \displaystyle 3 .

\\  

Question 15: Find the coordinates of the point which is equidistant from the four points \displaystyle O (0,0,0), A (2,0,0), B (0,3,0) \text{ and }   C (0, 0, 8).

Answer:

Let P(x, y, z) be the point which is equidistant from the four points \displaystyle O (0,0,0), A (2,0,0), B (0,3,0) \text{ and }   C (0, 0, 8).

The \displaystyle OP = AP 

\displaystyle \Rightarrow OP^2 = AP^2 

\displaystyle \therefore x^2 + y^2 + z^2 = (x-2)^2 + y^2 + z^2 

\displaystyle \Rightarrow x^2 = ( x- 2)^2 

\displaystyle \Rightarrow x^2 = x^2 - 4x + 4 

\displaystyle \Rightarrow 4x = 4 

\displaystyle \therefore x = 1 

Similarly, we have

\displaystyle OP=BP 

\displaystyle \Rightarrow OP^2 = BP^2 

\displaystyle \therefore x^2 + y^2 + z^2 = x^2 + ( y-3)^2 + z^2 

\displaystyle \Rightarrow y^2 = y^2 - 6y + 9 

\displaystyle \Rightarrow 6y = 9 

\displaystyle \Rightarrow y = \frac{3}{2} 

Similarly, we also have

\displaystyle OP = CP 

\displaystyle \Rightarrow OP^2 = CP^2 

\displaystyle \Rightarrow x^2 + y^2 + z^2 = x^2 + y^2 + ( z-8)^2 

\displaystyle \Rightarrow z^2 = z^2 - 16z + 64 

\displaystyle \Rightarrow 16 z= 64 

\displaystyle \Rightarrow z = 4 

\displaystyle \text{Thus the required point is } P ( 1, \frac{3}{2}, 4) 

\\  

Question 16: If \displaystyle A(-2,2,3) \text{ and }   B(13,-3,13) are two points. Find the locus of a point \displaystyle P which moves in such away that \displaystyle 3PA=2PB.

Answer:

Let the coordinate of point \displaystyle P be \displaystyle ( x, y, z)

Given:

\displaystyle 3PA = 2PB

\displaystyle \Rightarrow 3( \sqrt{(x+2)^2 + ( y-2)^2 + ( z-3)^2 } ) = 2 ( \sqrt{ (x-13)^2 + ( y+3)^2 + ( z-13)^2} )

\displaystyle \Rightarrow 3( \sqrt{x^2 + 2x + 4 + y^2 + 4 - 4 y + z^2+9 - 6z } ) = 2 ( \sqrt{ x^2 - 26x + 169 +y^2 +  6y + 9 + z^2- 26z+ 169} )

Squaring both sides we get:

\displaystyle 9( x^2 + y^2 + z^2+ 4x- 4y - 6z+ 17  ) = 4 ( x^2 + y^2 + z^2 - 26x +6y -26z +347   )

\displaystyle \Rightarrow  9x^2 + 9y^2 + 9z^2+ 36x- 36y - 54z+ 153 = 4x^2 + 4y^2 + 4z^2 - 104x +24y -104z +1388

\displaystyle \Rightarrow 5x^2 + 5y^2 + 5z^2 + 140 x - 60y +50z - 1235 = 0

This is the locus of the point \displaystyle P.

\\  

Question 17: Find the locus of \displaystyle P if \displaystyle PA^2 + PB^2 =2k^2, where \displaystyle A \text{ and }   B are the points \displaystyle (3, 4,5) \text{ and }   (-1,3,-7).

Answer:

Let the coordinate of point \displaystyle P be \displaystyle ( x, y, z)

Given:

\displaystyle PA^2 +PB^2 = 2k^2

\displaystyle ( \sqrt{(x-3)^2 + ( y-4)^2 + ( z-5)^2 } ) +  ( \sqrt{ (x+1)^2 + ( y-3)^2 + ( z+7)^2} ) = 2k^2

\displaystyle ( \sqrt{x^2 -6x + 9 + y^2 + 16 - 8 y + z^2+25 - 10z } ) + ( \sqrt{ x^2 + 2x + 1 +y^2 -  6y + 9 + z^2+14z+ 49} ) = 2k^2

Squaring both sides we get:

\displaystyle ( x^2 + y^2 + z^2-6x- 8y - 10z+ 50  ) +  ( x^2 + y^2 + z^2 +2x -6y +14z +59   ) = 2k^2

\displaystyle \Rightarrow 2x^2 + 2y^2 + 2z^2 -4 x - 14y +4z +109-2k^2 = 0

This is the locus of the point \displaystyle P.

\\  

Question 18: Show that the points \displaystyle (a , b , c), (b , c , a) \text{ and }   (c, a, b) are the vertices of an equilateral triangle.

Answer:

Let \displaystyle (a , b , c), (b , c , a) \text{ and }   (c, a, b) be the vertices of \displaystyle \triangle ABC. Then,

\displaystyle AB = \sqrt{ (b-a)^2+(c-b)^2+(a-c)^2 }

\displaystyle = \sqrt{ b^2-2ab+a^2+c^2-2bc+b^2+a^2-2ca+c^2 }

\displaystyle = \sqrt{ 2a^2+2b^2+2c^2-2ab-2bc-2ca } = \sqrt{ 2 (a^2+b^2+c^2-ab-bc-ca) }

\displaystyle BC = \sqrt{ (c-b)^2+(a-c)^2+(b-a)^2 }

\displaystyle = \sqrt{ c^2 - 2bc + c^2 + a^2 - 2ac+c^2+b^2 - 2ba+a^2 }

\displaystyle = \sqrt{ 2a^2+2b^2+2c^2-2ab-2bc-2ca }      = \sqrt{ 2 (a^2+b^2+c^2-ab-bc-ca) }

\displaystyle BC = \sqrt{ (a-c)^2+(b-a)^2+(c-b)^2 }

\displaystyle = \sqrt{ a^2 - 2ac + c^2 + b^2 - 2ba+a^2+c^2 - 2bc+b^2 }

\displaystyle = \sqrt{ 2a^2+2b^2+2c^2-2ab-2bc-2ca }  = \sqrt{ 2 (a^2+b^2+c^2-ab-bc-ca) }

\displaystyle \therefore AB = BC = CA

Therefore \displaystyle \triangle ABC is an equilateral triangle.

\\  

Question 19: Are the points \displaystyle A(3,6,9), B(10,20,30) \text{ and }   C(25,-41, 5), the vertices of a right-angled triangle?

Answer:

Let \displaystyle A(3,6,9), B(10,20,30) \text{ and }   C(25,-41, 5), the vertices of a \displaystyle \triangle ABC

\displaystyle AB = \sqrt{ (10-30)^2 + ( 20-6)^2 + ( 30-9)^2 }

\displaystyle = \sqrt{ (7)^2 + ( 14)^2 + ( 21)^2 }

\displaystyle = \sqrt{ 49 + 196+ 441 }

\displaystyle = \sqrt{686} = 7\sqrt{14}

\displaystyle BC = \sqrt{ (25-10)^2 + ( -41-20)^2 + ( 5-30)^2 }

\displaystyle = \sqrt{ (15)^2 + ( -61)^2 + ( -25)^2 }

\displaystyle = \sqrt{ 225 + 3721+ 625 }

\displaystyle = \sqrt{4571} 

\displaystyle CA = \sqrt{ (3-25)^2 + ( 6+41)^2 + ( 9-5)^2 }

\displaystyle = \sqrt{ (-22)^2 + ( 47)^2 + ( -4)^2 }

\displaystyle = \sqrt{ 484 + 2209+ 16 }

\displaystyle = \sqrt{2709} = 3\sqrt{301}

\displaystyle AB^2 + BC^2 = (7\sqrt{14} )^2+(\sqrt{4571})^2 = 686+4571 = 5257

\displaystyle CA^2 = 2709

\displaystyle \therefore AB^2 + BC^2 \neq CA^2

Therefore the points are not vertices of a right angles triangle.

\\  

Question 20: Verify the following:

(i) \displaystyle (0, 7, -10), (1,6, -6) \text{ and }   (4,9, -6) are vertices of an isosceles triangle.

(ii) \displaystyle (0,7,10), (-1,6,6) \text{ and }   (-4,9,6) are vertices of a right-angled triangle.

(iii) \displaystyle (-1,2,1), (1, -2,5), (4, -7,8) \text{ and }   (2, -3,4) are vertices of a parallelogram.

(iv) \displaystyle (5, -1,1), (7 , -4,7), (1, -6,10) \text{ and }   (-1, - 3,4)  are the vertices of a rhombus.

Answer:

(i) Let \displaystyle (0, 7, -10), (1,6, -6) \text{ and }   (4,9, -6) be the vertices of a \displaystyle \triangle ABC

\displaystyle AB = \sqrt{ (1-0)^2 + ( 6-7)^2 + ( -6+10)^2 }

\displaystyle = \sqrt{ (1)^2 + ( -1)^2 + ( 4)^2 }

\displaystyle = \sqrt{ 1 + 1+ 16 }

\displaystyle = \sqrt{18} = 3\sqrt{2}

\displaystyle BC = \sqrt{ (4-1)^2 + ( 9-6)^2 + ( -6+6)^2 }

\displaystyle = \sqrt{ (3)^2 + ( 3)^2 + (0)^2 }

\displaystyle = \sqrt{ 9+9 }

\displaystyle = \sqrt{18} = 3\sqrt{2}

\displaystyle CA = \sqrt{ (0-4)^2 + ( 7-9)^2 + ( -10+6)^2 }

\displaystyle = \sqrt{ (-4)^2 + ( -2)^2 + ( -4)^2 }

\displaystyle = \sqrt{ 16 + 4+ 16 }

\displaystyle = \sqrt{36} = 6

Therefore we see \displaystyle AB = BC

Thus the given points are the vertices of an isosceles triangle.

(ii) Let \displaystyle (0,7,10), (-1,6,6) \text{ and }   (-4,9,6) be the vertices of a \displaystyle \triangle ABC

\displaystyle AB = \sqrt{ (-1-0)^2 + ( 6-7)^2 + ( 6-10)^2 }

\displaystyle = \sqrt{ (-1)^2 + ( -1)^2 + ( -4)^2 }

\displaystyle = \sqrt{ 1 + 1+ 16 }

\displaystyle = \sqrt{18} = 3\sqrt{2}

\displaystyle BC = \sqrt{ (-4+1)^2 + ( 9-6)^2 + ( -6+6)^2 }

\displaystyle = \sqrt{ (-3)^2 + ( 3)^2 + (0)^2 }

\displaystyle = \sqrt{ 9+9 }

\displaystyle = \sqrt{18} = 3\sqrt{2}

\displaystyle CA = \sqrt{ (-4-0)^2 + ( 9-7)^2 + ( 6-10)^2 }

\displaystyle = \sqrt{ (-4)^2 + ( 2)^2 + ( -4)^2 }

\displaystyle = \sqrt{ 16 + 4+ 16 }

\displaystyle = \sqrt{36} = 6

Therefore we see \displaystyle AC^2 = AB^2 + BC^2

Thus the given points are the vertices of a right-angled  triangle.

(iii) Let \displaystyle (-1,2,1), (1, -2,5), (4, -7,8) \text{ and }   (2, -3,4) be the vertices of a quadrilateral \displaystyle ABCD

\displaystyle AB = \sqrt{ (1+1)^2 + ( -2-2)^2 + ( 5-1)^2 }

\displaystyle = \sqrt{ (2)^2 + ( -4)^2 + ( 4)^2 }

\displaystyle = \sqrt{ 4 + 16+ 16 }

\displaystyle = \sqrt{36} = 6

\displaystyle BC = \sqrt{ (4-1)^2 + ( -7+2)^2 + ( 8-5)^2 }

\displaystyle = \sqrt{ (3)^2 + ( -5)^2 + (3)^2 }

\displaystyle = \sqrt{ 9+25 + 9 }

\displaystyle = \sqrt{43}

\displaystyle CD = \sqrt{ (2-4)^2 + ( -3+7)^2 + ( 4-8)^2 }

\displaystyle = \sqrt{ (-2)^2 + ( 4)^2 + ( -4)^2 }

\displaystyle = \sqrt{ 4 + 16+ 16 }

\displaystyle = \sqrt{36} = 6

\displaystyle DA = \sqrt{ (-1-2)^2 + ( 2+3)^2 + ( 1-4)^2 }

\displaystyle = \sqrt{ (-3)^2 + ( 5)^2 + (-3)^2 }

\displaystyle = \sqrt{ 9+25 + 9 }

\displaystyle = \sqrt{43}

Therefore we see \displaystyle AB = CD \text{ and } BC = DA

Since. each pair of opposite sides are equal. the quadrilateral \displaystyle ABCD

(iv) Let \displaystyle (5, -1,1), (7 , -4,7), (1, -6,10) \text{ and }   (-1, - 3,4)  be the vertices of a quadrilateral \displaystyle ABCD

\displaystyle AB = \sqrt{ (5-7)^2 + (-1+4)^2 + ( 1-7)^2 }

\displaystyle = \sqrt{ (-2)^2 + ( 3)^2 + ( -6)^2 }

\displaystyle = \sqrt{ 4 + 9+ 36 }

\displaystyle = \sqrt{49} = 7

\displaystyle BC = \sqrt{ (7-1)^2 + ( -4+6)^2 + ( 7-10)^2 }

\displaystyle = \sqrt{ (6)^2 + ( 2)^2 + (-3)^2 }

\displaystyle = \sqrt{ 36+4 + 9 }

\displaystyle = \sqrt{49} = 7

\displaystyle CD = \sqrt{ (7-1)^2 + ( -4+6)^2 + ( 7-10)^2 }

\displaystyle = \sqrt{ (6)^2 + ( 2)^2 + ( -3)^2 }

\displaystyle = \sqrt{ 36 + 4+ 9 }

\displaystyle = \sqrt{49} = 7

\displaystyle DA = \sqrt{ (-1-5)^2 + ( -3+1)^2 + ( 4-1)^2 }

\displaystyle = \sqrt{ (-6)^2 + ( -2)^2 + (3)^2 }

\displaystyle = \sqrt{ 36+4 + 9 }

\displaystyle = \sqrt{49} = 7

Therefore we see \displaystyle AB = BC=CD=DA

Since. each sides are equal. the quadrilateral \displaystyle ABCD is a rhombus

\\  

Question 21: Find the locus of the points which are equidistant from the points \displaystyle (1,2,3) \text{ and }   (3, 2,-1).

Answer:

Let \displaystyle P(x, y, z) be any point that is equidistant from the points \displaystyle (1,2,3) \text{ and }   (3, 2,-1).

Therefore \displaystyle PA = PB

\displaystyle \Rightarrow \sqrt{ (x-1)^2 + ( y-2)^2 + ( z-3)^2 } = \sqrt{ (x-3)^2 + ( y-2)^2 + (z+1)^2 }

\displaystyle \Rightarrow x^2-2x+1+y^2-4y+4+z^2+9-6z = x^2-6x+9+y^2 - 4y + 4 + z^2 + 2z + 1

\displaystyle \Rightarrow -2x - 4y - 6z + 14 = - 6x - 4y+2z+14

\displaystyle \Rightarrow -2x+6x-4y+4y-6z-2z= 14 - 14

\displaystyle \Rightarrow 4x-8z=0

\displaystyle \Rightarrow x - 2z=0

Hence the locus is \displaystyle x - 2z = 0

\\  

Question 22: Find the locus of the point, the sum of whose distances from the points \displaystyle A(4,-0,0) \text{ and }   B (- 4,0, 0) is equal to \displaystyle 10.

Answer:

Let P(x, y, z) be any point, the sum of whose distances from the points \displaystyle A(4,-0,0) \text{ and }   B (- 4,0, 0) is equal to \displaystyle 10.

Therefore PA + PB = 10

\displaystyle \Rightarrow \sqrt{ (x-4)^2 + ( y-0)^2 + ( z-0)^2 } + \sqrt{ (x+4)^2 + ( y-0)^2 + (z-0)^2 } = 10

\displaystyle \Rightarrow \sqrt{ (x+4)^2 + ( y-0)^2 + (z-0)^2 } = 10 - \sqrt{ (x-4)^2 + ( y-0)^2 + ( z-0)^2 } 

\displaystyle \Rightarrow \sqrt{ x^2+8x+16 + y^2 + z^2 } = 10 - \sqrt{ x^2-8x+16 + y^2+z^2 } 

Squaring both sides we get

\displaystyle \Rightarrow x^2+8x+16 + y^2 + z^2 = 100 + x^2-8x+16 + y^2+z^2 - 20 \sqrt{ x^2-8x+16 + y^2+z^2 }

\displaystyle \Rightarrow 16x-100 = - 20 \sqrt{ x^2-8x+16 + y^2+z^2 }

\displaystyle \Rightarrow 4x-25 = - 5 \sqrt{ x^2-8x+16 + y^2+z^2 }

Squaring both sides we get

\displaystyle \Rightarrow 16x^2 + 625 - 200 x = 25 ( x^2-8x+16 + y^2+z^2 )

\displaystyle \Rightarrow 16x^2 + 625 - 200 x = 25  x^2-200x+400 + 25y^2+25z^2

\displaystyle \Rightarrow 9x^2+25y^2+25z^2-225=0

Hence the locus is \displaystyle 9x^2+25y^2+25z^2-225=0

\\  

Question 23: Show that the points \displaystyle A (1,2, 3), B(-1, -2, -1),C (2, 3,2) \text{ and }  , D (4,7 ,6) and the vertices of a parallelogram \displaystyle ABCD, but not a rectangle.

Answer:

Let \displaystyle A (1,2, 3), B(-1, -2, -1),C (2, 3,2) \text{ and }  , D (4,7 ,6) are the vertices of a quadrilateral ABCD.

\displaystyle AB = \sqrt{ (-1-1)^2+(-2-2)^2 + (-1-3)^2 } = \sqrt{4+16+16 } = \sqrt{36} = 6

\displaystyle BC = \sqrt{ (2+1)^2+(3+2)^2 + (2+1)^2 } = \sqrt{9+25+9 } = \sqrt{43} 

\displaystyle CD = \sqrt{ (4-2)^2+(7-3)^2 + (6-2)^2 } = \sqrt{4+16+16 } = \sqrt{36} = 6

\displaystyle DA = \sqrt{ (1-4)^2+(2-7)^2 + (3-6)^2 } = \sqrt{9+25+9 } = \sqrt{43}

Therefore \displaystyle AB = CD \text{ and }  BC = DA. The opposite sides are equal. Therefore ABCD is a parallelogram.

\displaystyle AC = \sqrt{ (2-1)^2+(3-2)^2 + (2-3)^2 } =\sqrt{1+1+1 } = \sqrt{3} 

\displaystyle BD = \sqrt{ (4+1)^2+(7+2)^2 + (6+1)^2 } = \sqrt{25+81+49 } = \sqrt{155} 

Therefore \displaystyle AC \neq BD. The diagonals are not equal.

Hence \displaystyle ABCD is not a rectangle.

\\  

Question 24: Find the equation of the set of the points P such that its distances from the points \displaystyle A(3,4, -5) \text{ and }   B (-2,1,4) are equal.

Answer:

Let \displaystyle P(x, y, z) be any point that is equidistant from the points \displaystyle A(3,4, -5) \text{ and }   B (-2,1,4)

Therefore \displaystyle PA = PB

\displaystyle \Rightarrow \sqrt{ (x-3)^2 + ( y-4)^2 + ( z+5)^2 } = \sqrt{ (x+2)^2 + ( y-1)^2 + (z-4)^2 }

\displaystyle \Rightarrow \sqrt{ x^2-6x+9+y^2-8y+16+z^2+25-10z } = \sqrt{ x^2-4x+4+y^2 - 2y + 1 + z^2 - 8z + 16 }

Squaring both sides we get

\displaystyle \Rightarrow x^2-6x+9+y^2-8y+16+z^2+25-10z = x^2-4x+4+y^2 - 2y + 1 + z^2 - 8z + 16

\displaystyle \Rightarrow -10x-6y+18z+29=0

\displaystyle \Rightarrow \therefore 10x+6y-18z-29=0

Hence, the required equation is \displaystyle 10x+6y-18z-29=0