Question 1: The vertices of the triangle are \displaystyle A (5, 4, 5), B(1, -1,3) \text{ and }  C(4, 3, 2). The internal bisector of angle \displaystyle A meets \displaystyle BC at \displaystyle D. Find the coordinates of \displaystyle D and the length \displaystyle AD.

Answer:

\displaystyle AB = \sqrt{(5-1)^2 + (4+1)^2+(6-3)^2} = \sqrt{ 16+25+9 } = \sqrt{50} = 5\sqrt{2}

\displaystyle AC = \sqrt{(5-4)^2 + (4-3)^2+(6-2)^2} = \sqrt{ 1+1+16 } = \sqrt{18} = 3\sqrt{2}

\displaystyle AD is the internal bisector of \displaystyle \angle BAC

\displaystyle \therefore \frac{BD}{DC} = \frac{AB}{AC} = \frac{5\sqrt{2}}{3\sqrt{2}} = \frac{5}{3}

Therefore \displaystyle D divides \displaystyle BC in the ratio of \displaystyle 5:3

\displaystyle \therefore D = \Bigg(  \frac{5 \times 4 + 3 \times 1}{5+3}, \frac{5 \times 3 + 3 \times (-1)}{5+3}, \frac{5 \times 2 + 3 \times 3}{5+3} \Bigg)

\displaystyle \Rightarrow D = \Bigg( \frac{23}{8}, \frac{12}{8}, \frac{19}{8} \Bigg)

\displaystyle \Rightarrow D = \Bigg( \frac{23}{8}, \frac{3}{2}, \frac{19}{8} \Bigg)

\displaystyle \therefore AD = \sqrt{ \Bigg(5 - \frac{23}{8} \Bigg)^2 + \Bigg(5 - \frac{12}{8} \Bigg)^2 + \Bigg(6 - \frac{19}{8} \Bigg)^2 }

\displaystyle = \sqrt{ \frac{17^2+20^2 + 29^2}{8^2} }

\displaystyle = \sqrt{ \frac{289+400+841}{8^2} } = \frac{\sqrt{1530}}{8}

\\  

Question 2: A point \displaystyle C with z-coordinate \displaystyle B lies on the line segment joining the points \displaystyle A (2, - 3, 4) \text{ and }  B (8, 0,10). Find its coordinates.

Answer:

Let \displaystyle C divides \displaystyle AB in the ratio of \displaystyle m:1

\displaystyle \text{Hence the coordinates of C  are } \Bigg(  \frac{8m+2}{m+1}, \frac{-3}{m+1}, \frac{10m+4}{m+1} \Bigg)

The z coordinate of \displaystyle C is \displaystyle 8.

\displaystyle \therefore \frac{10m+4}{m+1} = 8

\displaystyle \Rightarrow 10m + 4 = 8m+8

\displaystyle \Rightarrow 2m = 4

\displaystyle \Rightarrow m = 2

\displaystyle \text{Hence the coordinates of C  are } \Bigg(  \frac{8\times 2+2}{2+1}, \frac{-3}{2+1}, 8 \Bigg) = ( 6, -1, 8)

\\  

Question 3: Show that the three points \displaystyle A(2,3,4), B(-1,2 - 3) \text{ and }  C (-4,1, - 10) are collinear and find the ratio in which \displaystyle C divides \displaystyle AB.

Answer:

Let \displaystyle C divides \displaystyle AB in the ratio of \displaystyle m:1

\displaystyle \text{Hence the coordinates of C  are } \Bigg(  \frac{-m+2}{m+1}, \frac{2m+1}{m+1}, \frac{-3m+4}{m+1} \Bigg)

The coordinates of \displaystyle C is \displaystyle (-4,1, - 10).

\displaystyle \therefore \frac{-m+2}{m+1} = -4, \frac{2m+3}{m+1}= 1, \frac{-3m+4}{m+1} = 

\displaystyle \Rightarrow -m+2 = - 4 m-4, 2m+3 = m + 1 , -3m + 4 = - 10m-10

\displaystyle \Rightarrow -3m = - 6, m 

\displaystyle \Rightarrow m = - 2, m = -2, m=-2

Therefore \displaystyle m = - 2

Hence \displaystyle C divides \displaystyle AB in the ratio \displaystyle 2:1 ( externally)

\\  

Question 4: Find the ratio in which the line joining \displaystyle (2,4,5) \text{ and }  (3,5,4) is divided by the yz-plane.

Answer:

Given \displaystyle A (2, 4, 5) and \displaystyle B (3, 5, 4)

Let yz-plane divide \displaystyle AB at point \displaystyle P in the ratio \displaystyle (\lambda : 1)

Therefore we have

\displaystyle P = \Bigg( \frac{3\lambda+1}{\lambda+1} , \frac{5\lambda+4}{\lambda+1}, \frac{4\lambda+5}{\lambda+1} \Bigg)

Since \displaystyle P lies on yz-plane, the x-coordinate of \displaystyle P will be zero.

\displaystyle \therefore \frac{3\lambda+1}{\lambda+1} = 0

\displaystyle \Rightarrow 3\lambda+2 = 0

\displaystyle \therefore \lambda = \frac{-2}{3}

Hence the yz-plane divides \displaystyle AB externally in the ratio of \displaystyle 2:3

\\  

Question 5: Find the ratio in which the line segment joining the points \displaystyle (2, -1, 3) \text{ and }  (-1, 2, 1) is divided by the plane \displaystyle x+y+z=5.

Answer:

Suppose the plane \displaystyle x+y+z=5 divides the line joining \displaystyle A(2, -1. 3) and \displaystyle B(-1, 2, 1) at a point \displaystyle P in the ratio  \displaystyle (\lambda : 1)

Therefore the coordinates of \displaystyle P would be:

\displaystyle P = \Bigg( \frac{-\lambda+2}{\lambda+1} , \frac{2\lambda-1}{\lambda+1}, \frac{\lambda+3}{\lambda+1} \Bigg)

Since \displaystyle P lies on the plane \displaystyle x+y+z=5 , the coordinates of \displaystyle P must satisfy the equation of the plane.

\displaystyle \frac{-\lambda+2}{\lambda+1} + \frac{2\lambda-1}{\lambda+1}+ \frac{\lambda+3}{\lambda+1} = 5

\displaystyle \Rightarrow -\lambda+2 + 2\lambda-1 +\lambda+3 = 5\lambda+5

\displaystyle \Rightarrow 2\lambda + 4 = 5 \lambda + 5

\displaystyle \Rightarrow -3\lambda = 1

\displaystyle \therefore \lambda = \frac{-1}{3}

Hence the required ratio is \displaystyle 1:3 ( externally)

\\  

Question 6: If the points \displaystyle A (3, 2, -4), B(9,8,-10) \text{ and }  C (5,4,-6) are collinear, find the ratio in which \displaystyle C divides \displaystyle AB.

Answer:

Given points \displaystyle A (3, 2, -4), B(9,8,-10) \text{ and }  C (5,4,-6)

Let \displaystyle C divide \displaystyle AB at point \displaystyle P in the ratio \displaystyle (\lambda : 1)

Therefore we have

\displaystyle C = \Bigg( \frac{9\lambda+3}{\lambda+1} , \frac{8\lambda+2}{\lambda+1}, \frac{-10\lambda-4}{\lambda+1} \Bigg)

Given coordinates of \displaystyle C are \displaystyle ( 5, 4, -6)

\displaystyle \therefore \frac{9\lambda+3}{\lambda+1} = 5, \frac{8\lambda+2}{\lambda+1} = 4, \frac{-10\lambda-4}{\lambda+1} = -6

\displaystyle \text{These equations give } \lambda = \frac{1}{2}, \lambda = \frac{1}{2}, \lambda = \frac{1}{2}

Hence, \displaystyle C divides \displaystyle AB in the ratio \displaystyle \frac{1}{2}

\\  

Question 7: The mid-points of the sides of a triangle \displaystyle ABC are given by \displaystyle (- 2, 3, 5), (4, -1,7) \text{ and }  (6,5,3). Find the coordinates of \displaystyle A, B \text{ and }  C.

Answer:

Let \displaystyle D(x_1, y_1, z_1) , E(x_2, y_2, z_2) ,   and \displaystyle F(x_3, y_3, z_3)   be the vertices of the triangle.

And let \displaystyle A(- 2, 3, 5), B(4, -1,7) \text{ and }  C(6,5,3) be the midpoint of the slides \displaystyle EF, FA and \displaystyle DE respectively.

Now, \displaystyle A is the mid-point of \displaystyle EF.

\displaystyle \therefore \frac{x_2+x_3}{2} = - 2,  \frac{y_2+y_3}{2} = 3, \frac{z_2+z_3}{2} = 5

\displaystyle \Rightarrow x_2+x_3 = -4,  y_2+y_3= 6, z_2+z_3 = 10 \ \ \ \text{   ... ... ... ... ... i)}

Also, \displaystyle B is the mid-point of \displaystyle FD.

\displaystyle \therefore \frac{x_1+x_3}{2} = 4,  \frac{y_1+y_3}{2} = -1, \frac{z_1+z_3}{2} = 7

\displaystyle \Rightarrow x_1+x_3 = 8,  y_1+y_3= -2, z_1+z_3 = 14 \ \ \ \text{   ... ... ... ... ... ii)}

And, \displaystyle C is the mid-point of \displaystyle DE.

\displaystyle \therefore \frac{x_1+x_2}{2} = 6,  \frac{y_1+y_2}{2} = 5, \frac{z_1+z_2}{2} = 3

\displaystyle \Rightarrow x_1+x_2 = 12,  y_1+y_2= 10, z_1+z_2 = 6 \ \ \ \text{   ... ... ... ... ... iii)}

Adding first three equations in i), ii) and iii) we get

\displaystyle 2 ( x_1 + x_2+x_3) = -4 + 8 + 12 \Rightarrow x_1 + x_2+x_3 = 8

Solving the first three equations, we get \displaystyle x_1 = 12, x_2 = 0 , x_3 = -4

Adding the next three equation in  i), ii) and iii) we get

\displaystyle 2(y_1+y_2+y_3) = 6-2+10 \Rightarrow y_1+y_2+y_3 = 7

Solving the next three equations in i) , ii) and iii) we get

\displaystyle y_1 = 1, y_2 = 9 , y_3 = -3

Similarly, Adding the next three equation in  i), ii) and iii) we get

\displaystyle 2(z_1+z_2+z_3) = 10+14+6 \Rightarrow z_1+z_2+z_3 = 7

Solving the next three equations in i) , ii) and iii) we get

\displaystyle z_1 = 5, z_2 = 1 , z_3 = 9

Therefore the vertices of the triangle are \displaystyle (12, 1, 5), (0, 9, 1), (-4, -3, 9)

\\  

Question 8: \displaystyle A (1, 2, 3), B (0, 4,1), C (-1, -1, -3) are the vertices of a triangle \displaystyle ABC. Find the point in which the bisector of the angle \displaystyle BAC meets \displaystyle BC.

Answer:

\displaystyle AB = \sqrt{ (0-1)^2+(4-2)^2+(1-3)^2 } =  \sqrt{ 1+4+4 } = \sqrt{9} = 3

\displaystyle AC = \sqrt{ (-1-1)^2+(-1-2)^2+(-3-3)^2 }  = \sqrt{ 4+9+36 } = \sqrt{49} = 7

\displaystyle AD is the internal bisector of \displaystyle \angle BAC

\displaystyle \therefore \frac{BD}{DC} = \frac{AB}{AC} = \frac{3}{7}

Therefore \displaystyle D divides \displaystyle BC in the ratio of \displaystyle 3:7

\displaystyle \therefore D = \Bigg(  \frac{3(-1) + 3(0)}{3+7} , \frac{3(-1) + 7(4)}{3+7}, \frac{3(-3) + 7(1)}{3+7} \Bigg)

\displaystyle \Rightarrow D = \Bigg(  \frac{-3}{10} , \frac{25}{10}, \frac{-2}{10} \Bigg)

\displaystyle \Rightarrow D = \Bigg(  \frac{-3}{10} , \frac{5}{2}, \frac{-1}{5} \Bigg)

\\  

Question 9: Find the ratio in which the sphere \displaystyle x^2+y^2+z^2=504 divides the line joining the points \displaystyle (12, - 4,8) \text{ and }  (27, - 9,18).

Answer:

Let the sphere \displaystyle x^2+y^2+z^2=504 meet the line joining the points \displaystyle (12, - 4,8) \text{ and }  (27, - 9,18) at \displaystyle (x_1, y_1, z_1)

Therefore we have \displaystyle {x_1}^2+{y_1}^2+{z_1}^2=504 \ \ \ \text{   ... ... ... ... ... i) }

Let the point \displaystyle (x_1, y_1, z_1) divide the line joining \displaystyle (12, - 4,8) \text{ and }  (27, - 9,18) in the ratio \displaystyle (\lambda : 1 )

\displaystyle \therefore x_1 = \frac{27 \lambda + 12}{\lambda + 1} , y_1 = \frac{-9 \lambda -4}{\lambda + 1} , z_1 = \frac{18 \lambda + 8}{\lambda + 1}

Substituting these values in equation i) we get

\displaystyle \Bigg( {\frac{27 \lambda + 12}{\lambda + 1}} \Bigg) ^2+\Bigg( {\frac{-9 \lambda -4}{\lambda + 1}} \Bigg)^2+\Bigg( {\frac{18 \lambda + 8}{\lambda + 1}} \Bigg)^2=504

\displaystyle \Rightarrow 9( 9\lambda + 4)^2 + ( 9\lambda + 4)^2 + 4( 9\lambda+4)^2 = 504(\lambda+1)^2

\displaystyle \Rightarrow 9\lambda + 4 = \pm 6 ( \lambda + 1)

\displaystyle \Rightarrow \lambda = \pm \frac{2}{3}

Therefore the sphere divides the line joining \displaystyle (12, - 4,8) \text{ and }  (27, - 9,18) internally in the ratio of \displaystyle 2:3 and externally in the ratio of \displaystyle -2:3

\\  

Question 10: Show that the plane \displaystyle ax + by + cz + d = 0 divides the line joining the points \displaystyle (x_1, y_1, z_1) \text{ and } ( x_2, y_2, z_2) in the ratio \displaystyle -\frac{ ax_1 + by_1 + cz_1 + d }{ ax_2 + by_2 + cz_3 + d }.

Answer:

Let \displaystyle A(x_1, y_1, z_1) \text{ and } B( x_2, y_2, z_2)

Let the line joining \displaystyle A and \displaystyle B be divided by the plane \displaystyle ax + by + cz + d = 0 at point \displaystyle P in the ratio \displaystyle (\lambda : 1)

\displaystyle \therefore P = \Bigg(  \frac{\lambda x_2 + x_1}{\lambda + 1}, \frac{\lambda y_2 + y_1}{\lambda + 1} , \frac{\lambda z_2 + z_1}{\lambda + 1} \Bigg)

Since \displaystyle P lies on the given plane \displaystyle ax + by + cz + d = 0 , it should satisfy it. Hence,

\displaystyle a \Bigg(\frac{\lambda x_2 + x_1}{\lambda + 1} \Bigg) + b \Bigg(\frac{\lambda y_2 + y_1}{\lambda + 1} \Bigg) + c \Bigg(\frac{\lambda z_2 + z_1}{\lambda + 1} \Bigg) + d = 0

\displaystyle \Rightarrow a(\lambda x_2 + x_1) + b ( \lambda y_2 + y_1) + c(\lambda z_2 + z_1) + d(\lambda + 1) = 0

\displaystyle \Rightarrow \lambda (ax_2 + by_2 + cz_2 + d) + (ax_1 + by_1 + cz_1 + d) = 0

\displaystyle \Rightarrow \lambda = - \frac{ax_1 + by_1 + cz_1 + d}{ax_2 + by_2 + cz_2 + d}

Therefore the plane \displaystyle ax + by + cz + d = 0 divides the line joining the points \displaystyle (x_1, y_1, z_1) \text{ and } ( x_2, y_2, z_2) \text{ in the ratio } -\frac{ ax_1 + by_1 + cz_1 + d }{ ax_2 + by_2 + cz_3 + d }.

\\  

Question 11: Find the centroid of a triangle, mid-points of whose sides are \displaystyle (1, 2, -3), (3, 0,1) \text{ and }  (- 1, 1, - 4).

Answer:

Let \displaystyle A(x_1, y_1, z_1) , B(x_2, y_2, z_2) ,   and \displaystyle C(x_3, y_3, z_3)   be the vertices of the given triangle.

And \displaystyle D(1, 2, -3), E(3, 0,1) \text{ and }  F(- 1, 1, - 4) be the mid points of the sides \displaystyle BC, CA \text{ and } AB respectively.

\displaystyle D is the midpoint of \displaystyle BC

\displaystyle \therefore \frac{x_2+x_3}{2} = 1, \ \ \frac{y_2+y_3}{2} = 2, \ \ \frac{z_2+z_3}{2} = -3

\displaystyle \Rightarrow x_2+x_3 = 2, \ \ y_2+y_3 = 4, \ \ z_2+z_3 = -6  \ \ \ \text{   ... ... ... ... ... i)}

\displaystyle E is the midpoint of \displaystyle CA

\displaystyle \therefore \frac{x_1+x_3}{2} = 3, \ \ \frac{y_1+y_3}{2} = 0, \ \ \frac{z_1+z_3}{2} = 1

\displaystyle \Rightarrow x_1+x_3 = 6, \ \ y_1+y_3 = 0, \ \ z_1+z_3 = 2  \ \ \ \text{   ... ... ... ... ... ii)}

\displaystyle F is the midpoint of \displaystyle AB

\displaystyle \therefore \frac{x_1+x_2}{2} = -1, \ \ \frac{y_1+y_2}{2} = 1, \ \ \frac{z_1+z_2}{2} = -4

\displaystyle \Rightarrow x_1+x_2 = -2, \ \ y_1+y_2 = 2, \ \ z_1+z_2 = -8  \ \ \ \text{   ... ... ... ... ... iii)}

Adding equation i) , ii) and iii) we get

\displaystyle 2(x_1+x_2+x_3) = 6 \Rightarrow x_1+x_2+x_3 = 3

\displaystyle 2(y_1+y_2+y_3) = 6 \Rightarrow y_1+y_2+y_3 = 3

\displaystyle 2(z_1+z_2+z_3) = -12 \Rightarrow z_1+z_2+z_3 = -6

Therefore the coordinate of the centroid is given by

\displaystyle \Bigg( \frac{x_1+x_2+x_3}{3} , \frac{y_1+y_2+y_3}{3} ,  \frac{z_1+z_2+z_3}{3}   \Bigg) = (1, 1, -2)

\\  

Question 12: The centroid of a triangle \displaystyle ABC is at the point \displaystyle (1, 1, 1). If the coordinates of \displaystyle A \text{ and }  B are \displaystyle (3, -5,7) \text{ and }  (-1,7, -6) respectively, find the coordinates of the point \displaystyle C .

Answer:

Let \displaystyle G be the centroid of the \displaystyle \triangle ABC

Given \displaystyle G = ( 1, 1, 1)

Given \displaystyle A(3, -5,7) \text{ and }  B(-1,7, -6)

Let \displaystyle C= ( x, y, z)

\displaystyle \text{Therefore } 1 = \frac{3-1+x}{3} \Rightarrow 2+x = 3 \Rightarrow x = 1

\displaystyle \text{Similarly, } 1 = \frac{-5+7+y}{3} \Rightarrow 2+y = 3 \Rightarrow y = 1

\displaystyle \text{and } 1 = \frac{7-6+z}{3} \Rightarrow 1+z = 3 \Rightarrow x = 2

\displaystyle \text{Hence, centroid } G = ( 1, 1, 2)

\\  

Question 13: Find the coordinates of the points which trisect the line segment joining the points \displaystyle P (4,2, - 6) \text{ and }  Q(-10, -16, 6).

Answer:

Given \displaystyle P (4,2, - 6) \text{ and }  Q(-10, -16, 6)

Let \displaystyle A and \displaystyle B be the points that trisect \displaystyle PQ.

Therefore \displaystyle PA = AB = BQ

Therefore \displaystyle PA : AQ = 1:2

Thus \displaystyle A divides \displaystyle PQ internally in the ratio \displaystyle 1:2

\displaystyle \therefore A = \Bigg( \frac{1 \times 10 + 2 \times 4}{1+2},  \frac{1 \times (-16) + 2 \times 2}{1+2}, \frac{1 \times 6 + 2 \times (-6)}{1+2} \Bigg)

\displaystyle = \Bigg(  \frac{10+8}{3},  \frac{-16+4}{3}, \frac{6-12}{3} \Bigg)

\displaystyle = \Bigg(  \frac{18}{3},  \frac{-12}{3}, \frac{-6}{3} \Bigg)

\displaystyle = ( 6, -4, -2)

Similarly,

Thus \displaystyle B divides \displaystyle AQ internally in the ratio \displaystyle 1:1

\displaystyle \therefore B= \Bigg(  \frac{6+10}{2},  \frac{-4-16}{2}, \frac{-2+6}{2} \Bigg)

\displaystyle = \Bigg(  \frac{16}{2},  \frac{-20}{2}, \frac{4}{2} \Bigg)

\displaystyle = ( 8, -10, 2)

\\  

Question 14: Using section formula, show that the points \displaystyle A (2,-3,4),B(-1,2,1) \text{ and }  C(0,1/3,2) are collinear.

Answer:

\displaystyle \text{Given } A (2,-3,4),B(-1,2,1) \text{ and }  C(0,\frac{1}{3},2)

Let \displaystyle C divides \displaystyle AB in the ratio of \displaystyle \lambda :1

\displaystyle \text{Therefore the coordinates of C are } \Bigg(  \frac{-\lambda+2}{\lambda+1}, \frac{2\lambda-3}{\lambda+1}, \frac{\lambda+4}{\lambda+1} \Bigg)

\displaystyle \text{Comparing with } C(0,\frac{1}{3}, 2) \text{ we get, }

\displaystyle \frac{-\lambda+2}{\lambda+1} = 0 \ \ \Rightarrow -\lambda + 2 = 0 \ \ \Rightarrow \lambda = 2

\displaystyle \frac{2\lambda-3}{\lambda+1} = \frac{1}{3} \ \ \Rightarrow 6\lambda -9 = \lambda + 1 \ \ \Rightarrow \lambda = 2

\displaystyle \frac{\lambda+4}{\lambda+1} = 2 \ \ \Rightarrow \lambda + 4 = 2\lambda +2 \ \ \Rightarrow \lambda = 2

\displaystyle \lambda in all the three cases is the same. Therefore we can say that the given points are collinear.

\\  

Question 15: Given that \displaystyle P (3, 2, - 4), Q (5, 4, -6) \text{ and }  R (9, 8, - 10) are collinear. Find the ratio in which \displaystyle Q divides \displaystyle PR.

Answer:

Given \displaystyle P (3, 2, - 4), Q (5, 4, -6) \text{ and }  R (9, 8, - 10) are collinear.

Let \displaystyle Q divides \displaystyle PR in the ratio of \displaystyle \lambda :1

\displaystyle \text{Therefore the coordinates of Q are } \Bigg(  \frac{9\lambda+23}{\lambda+1}, \frac{8\lambda+2}{\lambda+1}, \frac{-10\lambda-4}{\lambda+1} \Bigg)

\displaystyle \text{Comparing with } Q (5, 4, -6) \text{ we get, }

\displaystyle \frac{9\lambda+3}{\lambda+1} =5 \ \ \Rightarrow 9\lambda + 3 = 5\lambda +5 \ \ \Rightarrow \lambda = \frac{1}{2}

\displaystyle \frac{8\lambda+2}{\lambda+1} = 4 \ \ \Rightarrow 8\lambda +2 = 4\lambda + 4 \ \ \Rightarrow \lambda = \frac{1}{2}

\displaystyle \frac{-10\lambda-4}{\lambda+1} = -6 \ \ \Rightarrow -10\lambda - 4 = -6\lambda -6 \ \ \Rightarrow \lambda = \frac{1}{2}

Hence we can say, \displaystyle Q divides \displaystyle PR in the ratio of \displaystyle 1:2

\\  

Question 16: Find the ratio in which the line segment joining the points \displaystyle (4, 8, 10) \text{ and }  (6, 10, - 8) is divided by the \displaystyle yz-plane.

Answer:

Given \displaystyle A(4, 8, 10) \text{ and }  B(6, 10, - 8)

Let yz-plane divide \displaystyle AB at point \displaystyle P in the ratio \displaystyle (\lambda : 1)

Therefore we have

\displaystyle P = \Bigg( \frac{6\lambda+4}{\lambda+1} , \frac{10\lambda+8}{\lambda+1}, \frac{-8\lambda+10}{\lambda+1} \Bigg)

Since \displaystyle P lies on yz-plane, the x-coordinate of \displaystyle P will be zero.

\displaystyle \therefore \frac{6\lambda+4}{\lambda+1} = 0

\displaystyle \Rightarrow 6\lambda+4 = 0

\displaystyle \therefore \lambda = \frac{-2}{3}

Hence the yz-plane divides \displaystyle AB externally in the ratio of \displaystyle 2:3